Answer:
The initial velocity of the ball is 28.714 m/s
Explanation:
Given;
time of flight of the ball, t = 2.93 s
acceleration due to gravity, g = 9.8 m/s²
initial velocity of the ball, u = ?
The initial velocity of the ball is given by;
v = u + (-g)t
where;
v is the final speed of the ball at the given time, = 0
g is negative because of upward motion
0 = u -gt
u = gt
u = (9.8 x 2.93)
u = 28.714 m/s
Therefore, the initial velocity of the ball is 28.714 m/s
Answer:
38.3 m/s
Explanation:
To find vertical component of initial velocity, you'd have to use sine ratio:

is vertical component of initial velocity and
is initial velocity given which is 50 m/s.
A stone is projected at an angle of 50 degrees so
= 50°. Substitute in the formula:

Therefore, the vertical component of initial velocity is approximately 38.3 m/s
(The picture is also attached for visual reference!)
The true statements about magnetic fields and forces will be A,D and E.
<h3>What is a magnet?</h3>
An iron piece,alloy, or other substance with its constituent atoms arranged in such a way that it shows magnetism qualities,
The function of the magnet is attracting other iron-containing objects or aligning itself in a magnetic field.
There are two poles of the magnet;
1. North Pole.
2. South Pole.
The same poles repel each other, while the opposite poles attract each other. In a sense, south-south and north-north repel. While the north-south and the south-north attract each other.
The correct statements are;
(A). The north pole attracts the south pole of a magnet.
(D)Forces caused by magnetic fields are weaker farther from the magnet.
(E)Magnetic forces can act on an object even if the object isn't touching the magnet.
Hence, the true statements about magnetic fields and forces will be A,D and E.
To learn more about the magnet, refer to the link;
brainly.com/question/13026686
#SPJ1
Answer:
A vacuum
Explanation:
Sound waves are examples of mechanical waves. Mechanical waves are waves which are transmitted through the vibrations of the particles in a medium.
For example, sound waves in air consist of oscillations of the air particles, which vibrate back and forth (longitudinal wave) along the direction of propagation of the wave itself.
Given this definition of mechanical wave, we see that such a wave cannot propagate if there is no medium, because there are no particles that would oscillate. Therefore, among the choices given, the following one:
a vacuum
represent the only situation in which a sound wave cannot propagate through: in fact, there are no particles in a vacuum, so the oscillations cannot occur. In all other cases, instead, sound waves can propagate.