Answer:
The phase angle is 0.0180 rad.
(c) is correct option.
Explanation:
Given that,
Voltage = 12 V
Angular velocity = 50 Hz
Capacitance 
Inductance 
Resistance 
We need to calculate the impedance
Using formula of impedance



We need to calculate the phase angle
Using formula of phase angle



Hence, The phase angle is 0.0180 rad.
Answer:
Increasing its charge
Increasing the field strength
Explanation:
For a charged particle moving in a circular path in a uniform magnetic field, the centripetal force is provided by the magnetic force, so we can write:

where
q is the charge
v is the velocity
B is the magnetic field
m is the mass
r is the radius of the orbit
The period of the motion is

Re-arranging for r

And substituting into the previous equation

Solving for T,

So we see that the period is:
- proportional to the charge and the magnetic field
- inversely proportional to the mass and the square of the speed
So the following will increase the period of the particle's motion:
Increasing its charge
Increasing the field strength
Answer:
The charge on the dust particle is 
Explanation:
From the question we are told that
The length is 
The width is 
The charge is 
The mass suspended in mid-air is 
Generally the electric field on the carpet is mathematically represented as

Where
is the permittivity of free space with value 
substituting values


Generally the electric force keeping the dust particle on the air equal to the force of gravity acting on the particles

=> 
=> 
=> 
=> 
Answer:
D
Explanation:
The power equation is P= V^2/R
Please let me know if this helped! Please rate it the brainlist if possible!
Answer:
3.0 seconds
Explanation:
We can solve the problem by considering the horizontal motion of the ball only. In fact, the ball moves by uniform motion (constant speed) along the horizontal direction, since there are no forces acting in this direction. The horizontal speed of the ball is given by:

and it does not change during the motion.
We also know that the ball travels a horizontal distance of d = 60 m, so we can find the time it takes to cover the distance by using the equation:
