I think it’s C b/c it works for me
Answer:
162 km
Explanation:
A diagram can be helpful.
Using the law of cosines, we can find the magnitude of the distance (c) to satisfy ...
c^2 = a^2 +b^2 -2ab·cos(C)
where C is the internal angle of the triangle of vectors and resultant. Its value is ...
180° -39.8° -59.9° = 80.3°
Filling in a=76 and b=156, we get ...
c^2 = 76^2 +156^2 -2·76·156·cos(80.3°) ≈ 26116.78
c ≈ √26116.78 ≈ 161.607
The magnitude of the total displacement is about 162 km.
_____
Please note that in the attached diagram North is to the right and East is up. That alteration of directions does not change the angles or the magnitude of the result.
Answer:
Energy = 1.5032*10^(-10) Joules
Explanation:
By Einstein's relativistic energy equation, we know that the energy of a given particle is given by:
Energy = rest energy + kinetic energy.
= m*c^2 + (γ - 1)*mc^2
Where γ depends on the velocity of the particle.
But if the proton is at rest, then the kinetic energy is zero, and γ = 1
Then the energy is just given by:
Energy = m*c^2
Where we know that:
mass of a proton = 1.67*10^(-27) kg
speed of light = c = 2.9979*10^(8) m/s
Replacing these in the energy equation, we get:
Energy = ( 1.6726*10^(-27) kg)*( 2.9979*10^(8) m/s)^2
Energy = 1.5032*10^(-10) kg*m^2/s^2
Energy = 1.5032*10^(-10) J
Microwaves at the specific frequency where vibrates water molecules
Or
Infrared waves is the other name for heat
C) at the bottom of the hill