Moles of PF₃ : 4
<h3>Further explanation</h3>
A reaction coefficient is a number in the chemical formula of a substance involved in the reaction equation. The reaction coefficient is useful for equalizing reagents and products.
Reaction

1.25 moles of P₄(s) is reacted with 6 moles of F₂(g)
Limiting reactant : the smallest ratio (mol divide by coefficient)
P₄ : F₂ =

mol PF₃ based on mol of limiting reactant(F₂), so mol PF₃ :

Answer : The rate law for the overall reaction is, ![Rate=k[NO]^2[H_2]](https://tex.z-dn.net/?f=Rate%3Dk%5BNO%5D%5E2%5BH_2%5D)
Explanation :
Rate law : It is defined as the expression which expresses the rate of the reaction in terms of molar concentration of the reactants with each term raised to the power their stoichiometric coefficient of that reactant in the balanced chemical equation.
As we are given the mechanism for the reaction :
Step 1 :
(slow)
Step 2 :
(fast)
Overall reaction : 
The rate law expression for overall reaction should be in terms of
.
As we know that the slow step is the rate determining step. So,
The slow step reaction is,

The expression of rate law for this reaction will be,
![Rate=k[NO]^2[H_2]](https://tex.z-dn.net/?f=Rate%3Dk%5BNO%5D%5E2%5BH_2%5D)
Hence, the rate law for the overall reaction is, ![Rate=k[NO]^2[H_2]](https://tex.z-dn.net/?f=Rate%3Dk%5BNO%5D%5E2%5BH_2%5D)
Celsius: -11.7
Kelvin: 261.5
Hope it helps! Please mark Brainliest! :)
Answer:
In order to balance the chemical equation, you need to make sure the number of atoms of each element on the reactants side is equal to the number of atoms of each element on the product side. In order make both sides equal, you will need to multiply the number of atoms in each element until both sides are equal.
Hope this helped you.