Answer:
1.) Micrometres screw gauge
2.) Tape rule.
Explanation:
Given that the diameter and the length of a thin wire, approximately 1m in length, are measured as accurately as possible.
what are the best instruments to use ?
To measure the diameter of a thin wire, the best instrument to use is known as micrometres screw gauge.
And to measure the length of a thin wire up to 1 m, the measuring device can be tape rule or long metre rule.
Answer:
The observed frequency by the pedestrian is 424 Hz.
Explanation:
Given;
frequency of the source, Fs = 400 Hz
speed of the car as it approaches the stationary observer, Vs = 20 m/s
Based on Doppler effect, as the car the approaches the stationary observer, the observed frequency will be higher than the transmitted (source) frequency because of decrease in distance between the car and the observer.
The observed frequency is calculated as;
![F_s = F_o [\frac{v}{v_s + v} ] \\\\](https://tex.z-dn.net/?f=F_s%20%3D%20F_o%20%5B%5Cfrac%7Bv%7D%7Bv_s%20%2B%20v%7D%20%5D%20%5C%5C%5C%5C)
where;
F₀ is the observed frequency
v is the speed of sound in air = 340 m/s
![F_s = F_o [\frac{v}{v_s + v} ] \\\\400 = F_o [\frac{340}{20 + 340} ] \\\\400 = F_o (0.9444) \\\\F_o = \frac{400}{0.9444} \\\\F_o = 423.55 \ Hz \\](https://tex.z-dn.net/?f=F_s%20%3D%20F_o%20%5B%5Cfrac%7Bv%7D%7Bv_s%20%2B%20v%7D%20%5D%20%5C%5C%5C%5C400%20%3D%20F_o%20%5B%5Cfrac%7B340%7D%7B20%20%2B%20340%7D%20%5D%20%5C%5C%5C%5C400%20%3D%20F_o%20%280.9444%29%20%5C%5C%5C%5CF_o%20%3D%20%5Cfrac%7B400%7D%7B0.9444%7D%20%5C%5C%5C%5CF_o%20%3D%20423.55%20%5C%20Hz%20%5C%5C)
F₀ ≅ 424 Hz.
Therefore, the observed frequency by the pedestrian is 424 Hz.
Answer:
108.217 °
Explanation:
Day of year = 356 = d (Considering year of 365 days)
Latitude of Tropic of Cancer = 23.5 °N
Declination angle
δ = 23.45×sin[(360/365)(d+284)]
⇒δ = 23.45×sin[(360/365)(356+284)]
⇒δ = 5.2832 °
Altitude angle at solar noon
90+Latitude-Declination angle
= 90+23.5-5.2832
= 108.217 °
∴ Altitude angle of the Sun as seen from the tropic of cancer on December 22 is 108.217 °
The ozone layer traps heat from the sun's heat. only three-fourths are reflected back out into space by the ozone layer. the greenhouse effect traps carbon dioxide and so does the ozone layer.
Answer:
increasing the temperature of the rod
Explanation:
Sound wave is a longitudinal wave and its speed in a solid rod is given by the formula

here we know that
Y = young's modulus
= density of the medium
so as we increase the temperature of rod the density of the rod will decrease while the elasticity will remain same
So on increasing the temperature we can say that speed will increase due to decrease in the density