Answer:
1. The compound should be dissolved at the solvent boiling point.
2. It should be better none of the compound dissolve while at room
temperature.
3. The compound must have lower boiling point (low boiling point) than
melting point in hot solvent so to avoid it melts.
4. The compound have different solubility and impurity.
Explanation:
in order a compound to have a good crystallization, these are the primary consideration that should be followed.
1. The compound should be dissolved at the solvent boiling point.
2. It should be better none of the compound dissolve while at room
temperature.
3. The compound must have lower boiling point (low boiling point) than
melting point in hot solvent so to avoid it melts.
4. The compound have different solubility and impurity.
Answer:
We know that force applied per unit area is called pressure.
Pressure = Force/ Area
When force is constant than pressure is inversely proportional to area.
1- Calculating the area of three face:
A1 = 20m x 10 m =200 Square meter
A2 = 10 mx 5 m = 50 Square meter
A3 = 20m x 5 m = 100 Square meter
Therefore A1 is maximum and A2 is minimum.
2- Calculate pressure:
P = F/ A1 = 30 / 200 = 0.15 Nm⁻² ( minimum pressure)
P = F / A2 = 30 / 50 = 0.6 Nm⁻² ( maximum pressure)
Hence greater the area less will be the pressure and vice versa.
Answer:
The dimensional formula of Young's modulus is [ML^-1T^-2]
Answer:
The current is halved
Explanation:
The relationship between the current and the resistance is given by Ohm's Law, as follows:

where,
V = Voltage
I = Current
R = Resistance
Therefore, if we double the resistance:

Hence the correct option is:
<u>The current is halved</u>
Answer:
490N
Explanation:
According Newton's second law!
\sum Force = mass × acceleration
Fm - Ff = ma
Fm is the moving force
Ff s the frictional force = 100N
mass = 65kg
acceleration = 6m/s²
Required
Moving force Fm
Substitute the given force into thr expression and get Fm
Fm -100 = 65(6)
Fm -100 = 390
Fm = 390+100
Fm = 490N
Hence the force that will cause two cart to move is 490N