Answer:
A negative charge, if free to move in an electric field, will move from a low potential point to a high potential point. To move a positive charge against the electric field, work has to be done by you or a force external to the field.
Explanation:
Mark as Brainliest plz!!!
B4 the tackle:
<span>The linebacker's momentum = 115 x 8.5 = 977.5 kg m/s north </span>
<span>and the halfback's momentum = 89 x 6.7 = 596.3 kg m/s east </span>
<span>After the tackle they move together with a momentum equal to the vector sum of their separate momentums b4 the tackle </span>
<span>The vector triangle is right angled: </span>
<span>magnitude of final momentum = √(977.5² + 596.3²) = 1145.034 kg m/s </span>
<span>so (115 + 89)v(f) = 1145.034 ←←[b/c p = mv] </span>
<span>v(f) = 5.6 m/s (to 2 sig figs) </span>
<span>direction of v(f) is the same as the direction of the final momentum </span>
<span>so direction of v(f) = arctan (596.3 / 977.5) = N 31° E (to 2 sig figs) </span>
<span>so the velocity of the two players after the tackle is 5.6 m/s in the direction N 31° E </span>
<span>btw ... The direction can be given heaps of different ways ... N 31° E is probably the easiest way to express it when using the vector triangle to find it</span>
Answer:
Explanation:
<u>Instant Velocity and Acceleration
</u>
Give the position of an object as a function of time y(x), the instant velocity can be obtained by
Where y'(x) is the first derivative of y respect to time x. The instant acceleration is given by
We are given the function for y
Note we have changed the last term to be quadratic, so the question has more sense.
The velocity is
And the acceleration is
b is the answer i hope this helped...
Answer:
Scalar quantity can never be Negative. Because scalar has only magnitude not direction. And magnitude can't be negative.
Explanation: