Answer:
Explanation:
Given the equation modelled by the height of the train given as:
s(t) = 18t²-2t³ for for 0 ≤ t ≤ 9
a) Velocity is the rate of change of displacement.
Velocity = dS(t)/dt
V = dS(t)/dt = 36t - 6t² miles
Velocity at t = 3hrs is determiner by substituting t = 3 into the velocity function.
V = 36(3) -6(3)²
V= 108 - 72
Velocity = 36mi/hr
b) for Velocity at time = 7hrs
V(7) = 36(7) - 6(7)²
V(7) = 252 - 294
V(7) = -42mi/hr
The velocity at t = 7hrs is -42mi/hr
c) Acceleration is the rate of change of velocity.
a(t) = dV(t)/dt
Given v(t) = 36t - 6t²
a(t) = 36 - 12t
Acceleration at t=1 is given as:
a(1) = 36 -12(1)
a(1) = 24mi/hr²
Answer:
8v
Explanation:
First we apply super position principle
Vt= v1 + v2+ v3
Remove qa
But vt= 20v
So V = v2+v3
V1= 20-15
= 5v
Remove qb
V= v1+v3
V=8v
So the potential when qa and qc are remove is the potential due to qb
Which is 8v
Answer:
The answer is below
Explanation:
Charlee's law states that the volume of a gas is directly proportion to the temperature of the gas at constant pressure. That is:
V = kT, where V = volume and T = temperature, k = constant. Therefore:
V / T = k

Given that: 
The new volume is 3.41 m³. That is it expands by 0.41 m³
Answer:

Explanation:
From the question we are told that:
Mass 
Height 
Speed 
Angle 
Generally the equation for K.E is mathematically given by
Since
The potential energy and kinetic energy is equal to the kinetic energy as it hits the ground.
Therefore



Explanation:
The static pressure is P = ρgh, where ρ is the density of the fluid and h is the depth.
For the first person:
P = (1000 kg/m³) (9.8 m/s²) (2.3 m)
P = 22,500 Pa
For the second person:
P = (1000 kg/m³) (9.8 m/s²) (3 m)
P = 29,400 Pa