Answer:
Explanation:
Geosynchronous orbit (GSO): Orbits with an altitude of approximately 35,786 km (22,236 mi). Such a satellite would trace an analemma (figure 8) in the sky. Geostationary orbit (GEO): A geosynchronous orbit with an inclination of zero.
The answer for the following question is explained below.
- <u><em>Therefore the work done is 130 kilo Joules.</em></u>
Explanation:
Work:
A force causing the movement or displacement of an object.
Given:
mass of the person (m) = 65 kg
height of the cliff (h) = 2000 m
To calculate:
work done (W)
We know;
According to the formula:
<u>W = m × g × h</u>
Where;
m represents mass of the person
g represents the acceleration due to gravity
where the value of g is;
<u> g = 10 m/ s²</u>
h represents the height of the cliff
From the above formula;
W = 65 × 10 × 2000
W = 130,000 J
W = 130 Kilo Joules
<u><em>Therefore the work done is 130 kilo Joules.</em></u>
The answer is B
I used these equations then i putted it together.
Charge = number of ( electron or proton ) x charge of ( electron or proton )
Force = k x (q1 q2)/r²
Answer:
no where we all stay home
Answer:
0.025V + (0.000218V/s³) t³
Explanation:
Parameters given:
Radius of coil, r = 3.85 cm = 0.0385 m
Number of turns, N = 450
Magnetic field, B = ( 1.20×10^(−2) T/s )t + (2.60×10^(−5) T/s4 )t^4.
The magnitude of Induced EMF is given as:
E = N * A * dB/dt
Where A is the area of the coil
First, we differentiate the magnetic field with respect to time:
dB/dt = 0.012 + 0.000104t³
Therefore, EMF will be:
E = 450 * 3.142 * (0.012 + 0.000104t³)
E = 2.096(0.012 + 0.000104t³)
E = 0.025V + (0.000218V/s³)t³