The answer would just be:
<span>Tungsten
</span>hope that this helps you! =)
<span>1.16 moles/liter
The equation for freezing point depression in an ideal solution is
ΔTF = KF * b * i
where
ΔTF = depression in freezing point, defined as TF (pure) ⒠TF (solution). So in this case ΔTF = 2.15
KF = cryoscopic constant of the solvent (given as 1.86 âc/m)
b = molality of solute
i = van 't Hoff factor (number of ions of solute produced per molecule of solute). For glucose, that will be 1.
Solving for b, we get
ΔTF = KF * b * i
ΔTF/KF = b * i
ΔTF/(KF*i) = b
And substuting known values.
ΔTF/(KF*i) = b
2.15âc/(1.86âc/m * 1) = b
2.15/(1.86 1/m) = b
1.155913978 m = b
So the molarity of the solution is 1.16 moles/liter to 3 significant figures.</span>
Answer: An acid is defined with having more [H₃O+] ions, and a base is defined with having more [OH-] ions. On the pH scale, an acid has a lower pH and a base has a higher pH. With this being said, the lower the pH, the more [H₃O+] ions are present and the higher the pH, the more [OH-] ions are present.
Explanation:
I hope this helps!! Pls give brainliest!! :)
Dang bro that stuff is really hard I’m defiantly on a lower grade lol