Answer:
The elements in the periodic table are arranged in order of increasing atomic number.
Explanation:
Answer:
2.893 x 10⁻³ mol NaOH
[HCOOH] = 0.5786 mol/L
Explanation:
The balanced reaction equation is:
HCOOH + NaOH ⇒ NaHCOO + H₂O
At the endpoint in the titration, the amount of base added is just enough to react with all the formic acid present. So first we will calculate the moles of base added and use the molar ratio from the reaction equation to find the moles of formic acid that must have been present. Then we can find the concentration of formic acid.
The moles of base added is calculated as follows:
n = CV = (0.1088 mol/L)(26.59 mL) = 2.892992 mmol NaOH
Extra significant figures are kept to avoid round-off errors.
Now we relate the amount of NaOH to the amount of HCOOH through the molar ratio of 1:1.
(2.892992 mmol NaOH)(1 HCOOH/1 NaOH) = 2.892992 mmol HCOOH
The concentration of HCOOH to the correct number of significant figures is then calculated as follows:
C = n/V = (2.892992 mmol) / (5.00 mL) = 0.5786 mol/L
The question also asks to calculate the moles of base, so we convert millimoles to moles:
(2.892992 mmol NaOH)(1 mol/1000 mmol) = 2.893 x 10⁻³ mol NaOH
4. density, temperature, surface tension.
7. extensive properties- uses mass and volume depends on tbe amount of substance present.
The salt doesn't dissolve at that temperature. heating aids in dissolving
Answer:
16.8 L
Explanation:
From the question given above, the following data were obtained:
Number of mole of He = 0.750 mole
Volume of He =?
Recall:
1 mole of any gas occupy 22.4 L at STP. This also implies that 1 mole of He occupies 22.4 L at STP.
Finally, we shall determine the volume occupied by 0.750 mole of He. This can be obtained as follow:
1 mole of He occupied 22.4 L at STP.
Therefore, 0.750 mole of He will occupy = 0.750 × 22.4 = 16.8 L at STP.
Thus, 0.750 mole of He is equivalent to 16.8 L