21.4 g Al * (1 mol / 26.98 g ) * (2 mol Fe / 2 mol Al) = 0.793 mol Fe
91.3 g Fe2O3 * (1 mol / 159.69 g) * (2 mol Fe / 1 mol Fe2O3) = 1.14 mol Fe
0.793 mol Fe * (55.85 g / 1 mol) = 44.3 g Fe produced.
Answer:
Density of unit cell ( rhodium) = 12.279 g/cm³
Explanation:
Given that:
The radius (r) of a rhodium atom = 135 pm
The atomic mass of rhodium = 102.90 amu
For a face-centered cubic unit cell,

where;
a = edge length.
Making "a" the subject of the formula:


a = 381.8 pm
to cm, we get:
a = 381.8 × 10⁻¹⁰ cm
However, recall that:
where;
mass of unit cell = mass of atom × numbers of atoms per unit cell
Also;


Recall also that number of atoms in a unit cell for a face-centered cubic = 4
So;

mass of unit cell = 6.83380375 × 10⁻²² g

Density of unit cell ( rhodium) = 12.279 g/cm³
Answer:
<u>It increases by a factor of four</u>
Explanation:
Boyle's Law : At constant temperature , the volume of fixed mass of a gas is inversely proportional to its pressure.
pV = K.......(1)
pV = constant
Charles law : The volume of the gas is directly proportional to temperature at constant pressure.
V = KT
or V/T = K = constant ....(2)
Applying equation (1) and (2)


According to question ,
T2 = 4 (T1)
V2 = V1
Put the value of T2 and V2 , The P2 can be calculated,

V1 and V1 cancel each other
T1 and T1 cancel each other
We get,

or
P2 = 4 P1
So pressure increased by the factor of four
Explanation:
Since HF is a weak acid, the use of an ICE table is required to find the pH. The question gives us the concentration of the HF.
HF+H2O⇌H3O++F−HF+H2O⇌H3O++F−
Initial0.3 M-0 M0 MChange- X-+ X+XEquilibrium0.3 - X-X MX M
Writing the information from the ICE Table in Equation form yields
6.6×10−4=x20.3−x6.6×10−4=x20.3−x
Manipulating the equation to get everything on one side yields
0=x2+6.6×10−4x−1.98×10−40=x2+6.6×10−4x−1.98×10−4
Now this information is plugged into the quadratic formula to give
x=−6.6×10−4±(6.6×10−4)2−4(1)(−1.98×10−4)−−−−−−−−−−−−−−−−−−−−−−−−−−−−√2x=−6.6×10−4±(6.6×10−4)2−4(1)(−1.98×10−4)2
The quadratic formula yields that x=0.013745 and x=-0.014405
However we can rule out x=-0.014405 because there cannot be negative concentrations. Therefore to get the pH we plug the concentration of H3O+ into the equation pH=-log(0.013745) and get pH=1.86
Answer is: <span>
The reaction will not be spontaneous at any temperature.
</span>
<span>Gibbs free energy
(G) determines if reaction will proceed spontaneously.
ΔG = ΔH - T·ΔS.
ΔG - changes in Gibbs free energy.
ΔH - changes in enthalpy.
ΔS - changes in entropy.
T is temperature in Kelvins.
When ΔS < 0 (negative entropy change) and ΔH > 0
(endothermic reaction), the process is never spontaneous (ΔG> 0).</span>