We can solve this problem by using Henry's law.
Henry's law states that the amount of dissolved gas is proportional to its partial pressure.

C is <span>the solubility of a gas.
</span><span>k is Henry's law constant.
</span><span>P is the partial pressure of the gas.
</span>We can calculate the constant from the first piece of information and then use Henry's law to calculate solubility in open drink.
0.12=4k
k=0.03
Now we can calculate the solubility in open drink.


Now we need to convert it to g/L. One mol of CO2 is 44.01<span>g.
</span>The final answer is:
Acid palmitic acid has higher melting point, because it has two more methylene groups.

Acid palmitic acid has higher melting point, because it has two more methylene groups.
Giving it a greater surface area and therefore more intermolecular van der waals interact than the myristic acid.
stearic arid 
linoleic acid
(two double bond)
Stearic acid has higher Melting point, because it does not have any Carbon-Carbon double bonds, whereas linoleic acid has two cis double bonds which prevent the molecules from packing closely together.
Oleic Acid and Linoleic acid.
-one double bond (cis)
Acid palmitic acid has higher melting point, because it has two more methylene groups.
For more such question on methylene group.
brainly.com/question/4279223
#SPJ4
Answer:
Suppose you added some solid NaCl to a saturated solution of NaCl at 20℃ and warmed the mixture to 40℃. What would happen to the added NaCl?
Explanation:
can you help with this one
Probably C hope this helps
Answer:
0.287 mole of PCl5.
Explanation:
We'll begin by calculating the number of mole in 51g of Cl2. This is illustrated below:
Molar mass of Cl2 = 2 x 35.5 = 71g/mol
Mass of Cl2 = 51g
Number of mole of Cl2 =..?
Mole = Mass /Molar Mass
Number of mole of Cl2 = 51/71 = 0.718 mole
Next, we shall write the balanced equation for the reaction. This is given below:
P4 + 10Cl2 → 4PCl5
Finally, we determine the number of mole of PCl5 produced from the reaction as follow:
From the balanced equation above,
10 moles of Cl2 reacted to produce 4 moles of PCl5.
Therefore, 0.718 mole of Cl2 will react to produce = (0.718 x 4)/10 = 0.287 mole of PCl5.
Therefore, 0.287 mole of PCl5 is produced from the reaction.