Answer:
A tensor is a quantity, for example a stress or a strain, which has magnitude, direction, and a plane in which it acts. Stress and strain are both tensor quantities. ... A tensor is a quantity, for example a stress or a strain, which has magnitude, direction, and a plane in which it acts.
Inertia Tensor. where I = the inertia tensor. The angular momentum of a rigid body rotating about an axis passing through the origin of the local reference frame is in fact the product of the inertia tensor of the object and the angular velocity. ... As shown in [7], the inertia tensor is symmetric.
Explanation:
Hope dis help
Answer:
v = 10 m/s
Explanation:
Given that,
Distance covered by a sprinter, d = 100 m
Time taken by him to reach the finish line, t = 10 s
We need to find his average velocity. We know that velocity is equal to the distance covered divided by time taken. So,
v = d/t

Hence, his average velocity is 10 m/s.
A camera flash or lighting bolt because stored separated positive and negative charges --> caused them to do work by briefly lighting a bulb as the separated charges moved back together
The complete question is;
A circular coil consists of N = 410 closely winded turns of wire and has a radius R = 0.75 m. A counterclockwise current I = 2.4 A is in the coil. The coil is set in a magnetic field of magnitude B = 1.1 T.
a. Express the magnetic dipole moment μ in terms of the number of the turns N, the current I, and radius
R.
b. Which direction does μ go?
Answer:
A) μ = 1738.87 A.m²
B) The direction of the magnetic moment will be in upward direction.
Explanation:
We are given;
The number of circular coils;
N = 410
The radius of the coil;R = 0.75m
The current in the coils; I = 2.4 A
The strength of magnetic field;
B =1.1T
The formula for magnetic dipole moment is given as;
μ = NIA
Where;
N is number of turns
I is current
A is area
Now, area; A = πr²
So, A = π(0.75)²
Thus,plugging in relevant values, the magnetic dipole moment is;
μ = 410 * 2.4 * π(0.75)²
μ = 1738.87 A.m²
B) According to Fleming's right hand rule, the direction of the magnetic moment comes out to be in upward direction.
-- The lenses of eyeglasses work because of refraction.
-- A pencil standing in a half-glass of water looks broken because of refraction.
-- The lenses and mirrors in telescopes and microscopes work because of refraction.
-- When the sun is setting and it looks squashed ... shorter and wider than a true circle ... that's caused by refraction of the sunlight through Earth's atmosphere.