1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nadusha1986 [10]
3 years ago
10

671 ÷24showing work please and thank you

Mathematics
2 answers:
telo118 [61]3 years ago
6 0

Answer: 27.958333333333333333333333333333........

Step-by-step explanation: Use long division method or do rounding method round each number and divide.

sergiy2304 [10]3 years ago
5 0

Answer:

The answer is 27.9583333333

Step-by-step explanation:

24 goes into 67 two times

24+24=48

67-48=19

add back in the 1

how many times does 24 go into 191

it goes into 191 7.9583333333 times

so final answer 27.9583333333 it might be confusing but

You might be interested in
Reynaldo is making a model of his school building. The actual building is 28
tankabanditka [31]

Answer:

It's 22.5 inches because the breadth is grater than the length

7 0
4 years ago
Read 2 more answers
State the postulate or theorem that allows you to conclude that a II b.<br><br> (This is geometry)
scZoUnD [109]
Converse Perpendicular Transversal Theorem.
If two lines are perpendicular to the same line, then the lines are parallel.
7 0
3 years ago
<img src="https://tex.z-dn.net/?f=prove%20that%5C%20%20%5Ctextless%20%5C%20br%20%2F%5C%20%20%5Ctextgreater%20%5C%20%5Cfrac%20%7B
inysia [295]

\large \bigstar \frak{ } \large\underline{\sf{Solution-}}

Consider, LHS

\begin{gathered}\rm \: \dfrac { \tan \theta + \sec \theta - 1 } { \tan \theta - \sec \theta + 1 } \\ \end{gathered}

We know,

\begin{gathered}\boxed{\sf{  \:\rm \: {sec}^{2}x - {tan}^{2}x = 1 \: \: }} \\ \end{gathered}  \\  \\  \text{So, using this identity, we get} \\  \\ \begin{gathered}\rm \: = \:\dfrac { \tan \theta + \sec \theta - ( {sec}^{2}\theta - {tan}^{2}\theta )} { \tan \theta - \sec \theta + 1 } \\ \end{gathered}

We know,

\begin{gathered}\boxed{\sf{  \:\rm \: {x}^{2} - {y}^{2} = (x + y)(x - y) \: \: }} \\ \end{gathered}  \\

So, using this identity, we get

\begin{gathered}\rm \: = \:\dfrac { \tan \theta + \sec \theta - (sec\theta + tan\theta )(sec\theta - tan\theta )} { \tan \theta - \sec \theta + 1 } \\ \end{gathered}

can be rewritten as

\begin{gathered}\rm\:=\:\dfrac {(\sec \theta + tan\theta ) - (sec\theta + tan\theta )(sec\theta -tan\theta )} { \tan \theta - \sec \theta + 1 } \\ \end{gathered} \\  \\  \\\begin{gathered}\rm \: = \:\dfrac {(\sec \theta + tan\theta ) \: \cancel{(1 - sec\theta + tan\theta )}} { \cancel{ \tan \theta - \sec \theta + 1} } \\ \end{gathered} \\  \\  \\\begin{gathered}\rm \: = \:sec\theta + tan\theta \\\end{gathered} \\  \\  \\\begin{gathered}\rm \: = \:\dfrac{1}{cos\theta } + \dfrac{sin\theta }{cos\theta } \\ \end{gathered} \\  \\  \\\begin{gathered}\rm \: = \:\dfrac{1 + sin\theta }{cos\theta } \\ \end{gathered}

<h2>Hence,</h2>

\begin{gathered} \\ \rm\implies \:\boxed{\sf{  \:\rm \: \dfrac { \tan \theta + \sec \theta - 1 } { \tan \theta - \sec \theta + 1 } = \:\dfrac{1 + sin\theta }{cos\theta } \: \: }} \\ \\ \end{gathered}

\rule{190pt}{2pt}

5 0
3 years ago
Idk how to do it i need the answer plsss
Irina18 [472]
It rose 29 degrees in that time frame
8 0
3 years ago
Read 2 more answers
Suppose you multiply a whole number greater than one by the fraction 3/5. will the product be greater than less than or equal to
Damm [24]
Ittttts obviously be greater than   3/5 
 5 * 3/5 to get 3!!
5 0
4 years ago
Other questions:
  • Determine the prime factorization of 60. A. 22 • 11 B. 2 • 32 • 5 C. 23 • 11 D. 22 • 3 • 5
    7·1 answer
  • Can I have help with number 7 please
    10·1 answer
  • Solve for <br> e. show your work. ( 264 3 x 5 ) ÷ 3 = e
    9·1 answer
  • ¿Cuál es el área lateral y el área de superficie del cono a la pulgada cuadrada más cercana?
    5·1 answer
  • Solve for y: |6y - 3| + 8 = 35 Select one: a. y = -5 b. y = 5 or y = -4 c. =5=−203 y = 5 o r y = − 20 3 d. y = 5
    12·1 answer
  • Jeremy has 50 marbles. Sixteen percent of his marbles are blue. How many blue marbles does Jeremy have?
    11·1 answer
  • Which of the following is a solution of x2 − 6x = –22?
    7·2 answers
  • Find the next term of the sequence.<br> 24, 17, 10, 3, ...<br><br> -7 <br> 0<br> -4<br> -5
    9·1 answer
  • Please<br><br> help due soon.<br><br>The choices are plan a,b,c, and non of them
    14·1 answer
  • Find sin θ if θ is in Quadrant III and tan θ = -1/5
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!