The answer is C- sulfur hexachlorine (SF6)
<span>S<span>F6 is the only molecule here that is non-polar. That's due to having the</span></span><span> fluorine atoms arranged in a way that, in pairs, they lie opposite to each other. Also, these pairs are perpendicular to each other on three different axis.</span>
Stored mechanical energy is energy stored and awaiting to be used and mechanical energy is the energy that was stored being used.
Answer:
H₂S; CO₂; SiH₄
Explanation:
London dispersion forces are larger in molecules that are large and have more atoms or electrons.
A. H₂O or H₂S
H₂S. S is below O in the Periodic Table, so it is the larger atom. Its electrons are more polarizable.
B. CO₂ or CO
CO₂. CO₂ has more atoms. It is also linear, so the molecules can get close to each other and maximize the attractive forces.
C. CH₄ or SiH₄
CH₄. Si is below C in the Periodic Table, so it is the larger atom. Its electrons are more polarizable.
A high concentration of water has <u>fewer</u> dissolved particles than a low water concentration.
Most cell membranes are not as easily permeable to many dissolved compounds as water is. There is a quick and constant flow of water. From one area with less dissolved matter to another with more, water transports NET. Or, if you want, from an area with a lot of water to one with little water. The terms isotonic, hypotonic, and hypertonic refer to the concentration of dissolved material. In a medium, such as the extracellular fluid, every distinct material has a concentration gradient that is unique from the gradients of other substances. Every substance will diffuse in line with that gradient as well.
Learn more about Concentration here-
brainly.com/question/10725862
#SPJ4
Answer:
116 g
Explanation:
From the question given above, the following data were obtained:
Number of mole of calcium = 2.9 moles
Mass of calcium =.?
The mole and mass of a substance are related according to the following formula:
Mole = mass / molar mass
With the above formula, we can obtain the mass of calcium. This can be obtained as follow:
Number of mole of calcium = 2.9 moles
Molar mass of calcium = 40 g/mol
Mass of calcium =.?
Mole = mass / molar mass
2.9 = mass of calcium / 40
Cross multiply
Mass of calcium = 2.9 × 40
Mass of calcium = 116 g
Therefore, the mass of 2.9 moles of calcium is 116 g.