




Consider a
ABC right angled at C and
Then,
‣ Base [B] = BC
‣ Perpendicular [P] = AC
‣ Hypotenuse [H] = AB

Let,
Base = 7k and Perpendicular = 8k, where k is any positive integer
In
ABC, H² = B² + P² by Pythagoras theorem






Calculating Sin




Calculating Cos




<u>Solving the given expression</u><u> </u><u>:</u><u>-</u><u> </u>

Putting,
• Sin
= 
• Cos
= 

<u>Using</u><u> </u><u>(</u><u>a</u><u> </u><u>+</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>(</u><u>a</u><u> </u><u>-</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>=</u><u> </u><u>a²</u><u> </u><u>-</u><u> </u><u>b²</u>










✧ Basic Formulas of Trigonometry is given by :-


✧ Figure in attachment

The scale for the second values is 56/8 = 7
C = 3 x 7 = 21
C= 21
Its is greater, your welcome xoxo savi eden
Answer:
Step-by-step explanation:
f(x) = 3x + 1 and g(x) = x^2 - 6
(f + g) (x)
(3x + 1) + (x^2 - 6)
3x + 1 + x^2 - 6
3x - 5 - x^2
=> -x^2 + 3x - 5
I hope this helps!
Answer:
(-1, -1/2)
Step-by-step explanation:
M= (Xa+Xb/2, Ya + Yb/2)
M= -11+9/2 , 0 + -1/2
M = -2/2, -1/2
M=(-1, -1/2)