Answer:the 5g would be more dense due to the mass and structure
Of it causing the atoms to expand as heat gets added
Explanation:
Answer:
2.29 g of N2
Explanation:
We have to start with the <u>chemical reaction</u>:

The next step is to <u>balance the reaction</u>:

We can continue with the <u>mol calculation</u> using the molar mass of
(65 g/mol), so:

Now, with the<u> molar ratio</u> between
and
we can <u>calculate the moles</u> of
(2:3), so:
With the molar mass of
we can <u>calculate the grams</u>:
I hope it helps!
Answer:
463.0 g.
Explanation:
- We can use the following relation:
<em>n = mass/molar mass.</em>
where, n is the mass of copper(ii) fluoride (m = 4.56 mol),
mass of copper(ii) fluoride = ??? g.
molar mass of copper(ii) fluoride = 101.543 g/mol.
∴ mass of copper(ii) fluoride = (n)(molar mass) = (4.56 mol)(101.543 g/mol) = 463.0 g.
Answer:
theory is diffrent from law
Explanation:
a Theory can never be proven to be true nd a law can usually be expressed
Did you mean when it is a liquid?