Answer:
Mass is the amount of matter in an object and does not change with location.
Explanation:
Answer:
1) 2Al + 6HCl ⟶ 2AlCl₃ + 3H₂
Fe + 2HCl ⟶ FeCl₂ + H₂
2) Cu = 2.5 g; Al = 3.5 g; Fe = 4.0 g
Explanation:
1) Possible reactions
2Al + 6HCl ⟶ 2AlCl₃ + 3H₂
Fe + 2HCl ⟶ FeCl₂ + H₂
2) Mass of each metal
a) Mass of Cu
The waste was the unreacted copper.
Mass of Cu = 2.5 g
b) Masses of Al and Fe
We have two relations
:
Mass of Al + mass of Fe = 10 g - 2.5 g = 7.5 g
H₂ from Al + H₂ from Fe = 6.38 L at NTP
i) Calculate the moles of H₂
NTP is 20 °C and 1 atm.

(ii) Solve the relationship
Let x = mass of Al. Then
7.5 - x = mass of Fe
Moles of Al = x/27
Moles of Fe = (7.5 - x)/56
Moles of H₂ from Al = (3/2) × Moles of Al = (3/2) × (x/27) = x
/18
Moles of H₂ from Fe = (1/1) × Moles of Fe = (7.5 - x)/56
∴ x/18 + (7.5 - x)/56 = 0.2652
56x + 18(7.5 - x) = 267.3
56x + 135 - 18x = 267.3
38x = 132.3
x = 3.5 g
Mass of Al = 3.5 g
Mass of Fe = 7.5 g - 3.5 g = 4.0 g
The masses of the metals are Cu = 2.5 g; Al = 3.5 g; Fe = 4.0 g
The accepted model of the atom was changed.
A B and C are all chemical changes. paper tearing is not.
Answer:
The volume of the vessel is 250 L
Partial pressure of hydrogen = 189 torr
Explanation:
Using Boyle's law

Given ,
V₁ = 20.0 L
V₂ = ?
P₁ = 25 atm
P₂ = 2 atm
Using above equation as:




<u>The volume of the vessel is 250 L.</u>
According to Dalton's law of partial pressure:-

So, according to definition of mole fraction:

Also,
Mole fraction of H₂ = 1 - Mole fraction of He = 1 - 0.75 = 0.25
So,
Total pressure = 756 torr
Thus,

<u>Partial pressure of hydrogen = 189 torr.</u>