1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Korvikt [17]
3 years ago
7

A wave on a rope has a wavelength of 2.0 m and a frequency of 2.0 Hz. What is the speed of the wave?

Mathematics
1 answer:
Vsevolod [243]3 years ago
4 0

depends on the tension and the length of the rope


You might be interested in
Simplify u^2+3u/u^2-9<br> A.u/u-3, =/ -3, and u=/3<br> B. u/u-3, u=/-3
VashaNatasha [74]
  The correct answer is:  Answer choice:  [A]:
__________________________________________________________
→  "\frac{u}{u-3} " ;  " { u \neq ± 3 } " ; 

          →  or, write as:  " u / (u − 3) " ;  {" u ≠ 3 "}  AND:  {" u ≠ -3 "} ; 
__________________________________________________________
Explanation:
__________________________________________________________
 We are asked to simplify:
  
  \frac{(u^2+3u)}{(u^2-9)} ;  


Note that the "numerator" —which is:  "(u² + 3u)" — can be factored into:
                                                      →  " u(u + 3) " ;

And that the "denominator" —which is:  "(u² − 9)" — can be factored into:
                                                      →   "(u − 3) (u + 3)" ;
___________________________________________________________
Let us rewrite as:
___________________________________________________________

→    \frac{u(u+3)}{(u-3)(u+3)}  ;

___________________________________________________________

→  We can simplify by "canceling out" BOTH the "(u + 3)" values; in BOTH the "numerator" AND the "denominator" ;  since:

" \frac{(u+3)}{(u+3)} = 1 "  ;

→  And we have:
_________________________________________________________

→  " \frac{u}{u-3} " ;   that is:  " u / (u − 3) " ;  { u\neq 3 } .
                                                                                and:  { u\neq-3 } .

→ which is:  "Answer choice:  [A] " .
_________________________________________________________

NOTE:  The "denominator" cannot equal "0" ; since one cannot "divide by "0" ; 

and if the denominator is "(u − 3)" ;  the denominator equals "0" when "u = -3" ;  as such:

"u\neq3" ; 

→ Note:  To solve:  "u + 3 = 0" ; 

 Subtract "3" from each side of the equation; 

                       →  " u + 3 − 3 = 0 − 3 " ; 

                       → u =  -3 (when the "denominator" equals "0") ; 
 
                       → As such:  " u \neq -3 " ; 

Furthermore, consider the initial (unsimplified) given expression:

→  \frac{(u^2+3u)}{(u^2-9)} ;  

Note:  The denominator is:  "(u²  − 9)" . 

The "denominator" cannot be "0" ; because one cannot "divide" by "0" ; 

As such, solve for values of "u" when the "denominator" equals "0" ; that is:
_______________________________________________________ 

→  " u² − 9 = 0 " ; 

 →  Add "9" to each side of the equation ; 

 →  u² − 9 + 9 = 0 + 9 ; 

 →  u² = 9 ; 

Take the square root of each side of the equation; 
 to isolate "u" on one side of the equation; & to solve for ALL VALUES of "u" ; 

→ √(u²) = √9 ; 

→ | u | = 3 ; 

→  " u = 3" ; AND;  "u = -3 " ; 

We already have:  "u = -3" (a value at which the "denominator equals "0") ; 

We now have "u = 3" ; as a value at which the "denominator equals "0"); 

→ As such: " u\neq 3" ; "u \neq -3 " ;  

or, write as:  " { u \neq ± 3 } " .

_________________________________________________________
6 0
3 years ago
(PLEASE HELP!!!Which number line can be used to find the distance between (-1,2) and (-5,2)?
KIM [24]

Answer:

I think it is the first number line

Step-by-step explanation:

I think it is this one because it is the only one that shows the placement of -1 and -5. I am sorry if the answer is wrong.

6 0
3 years ago
Let f(x) = tan(x) - 2/x. Let g(x) = x^2 + 8. What is f(x)*g(y)?
Tema [17]

Answer:

f(x)\times g(y)=y^2tan(x)+8tan(x)-\frac{2y^2}{x}-\frac{16}{x}

Step-by-step explanation:

We are given that

f(x)=tan(x)-\frac{2}{x}

g(x)=x^2+8

We have to find f(x)\times g(y)

To find the value of f(x)\times g(y) we will multiply f(x) by g(y)

g(y)=y^2+8

Now,

f(x)\times g(y)=(tanx-\frac{2}{x})(y^2+8)

f(x)\times g(y)=tan(x)(y^2+8)-\frac{2}{x}(y^2+8)

f(x)\times g(y)=y^2tan(x)+8tan(x)-\frac{2y^2}{x}-\frac{16}{x}

Hence,

f(x)\times g(y)=y^2tan(x)+8tan(x)-\frac{2y^2}{x}-\frac{16}{x}

5 0
3 years ago
PLEASE HELP! WILL MARK BRAINLIEST!
Serga [27]

answer:

its answer 4. or D.

x = 5.33

6 0
4 years ago
Read 2 more answers
The Toblerone candy comes in a package like the triangular prism. The bases of the triangles are 2 inches with a height of 2.5 i
castortr0y [4]

Answer: 50 cubic in .

Step-by-step explanation: 10x2= 20 and then 20x2.5=50

6 0
3 years ago
Other questions:
  • Lines A and B are parallel
    8·1 answer
  • 2 centimeters on the map represents 100 kilometers
    11·1 answer
  • I BET NO ONE KNOWS THIS QUESTION. Lower income tends to predict less parental involvement. IN this example, lower income is:
    15·2 answers
  • Y = 7x if y = 196 , what is x ?
    13·2 answers
  • There are thirty-two pets at the pet shop where Donna works. There are three times as many mammals as reptiles in the store. How
    14·1 answer
  • Graph the solution. x/8&gt;2÷(3+2x2+1)⋅2
    9·1 answer
  • I need help anyone plss :)
    5·1 answer
  • Solve for B<br> ab +c=d
    11·2 answers
  • Which situation results in -6 as a final value
    11·1 answer
  • If Kamina can do a job in 43 hours and Simon and Kamina working together can do the same job in 15 hours, find how
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!