Answer:
Potassium iodide increases the decomposition rate of hydrogen peroxide.
Explanation:
Potassium iodide increases the decomposition rate of hydrogen peroxide because potassium iodide act as a catalyst. A catalyst speed up the process of chemical reaction without reacting with the molecules present in reaction. If the potassium iodide is not present as a catalyst for the decomposition of hydrogen peroxide then the decomposition of hydrogen peroxide takes too much time because the catalyst is absent that speed up the reaction.
During glycolysis is used glucose, ADP and pyruvate and produce ATP, water and NADH.
<h3>What is glycolysis?</h3>
Glycolysis is the first step of cellular respiration by which glucose is used to generate energy in the form of ATP.
Cellular respiration has three sequential steps, i.e., glycolysis, the Krebs cycle and oxidative phosphorylation.
Glycolysis is the cellular respiration step that generates 2 net high energy ATP molecules and 2 reduced NADH.
In conclusion, glycolysis uses glucose, pyruvate and ADP to generate ATP, water and Nicotinamide adenine dinucleotides (NADH).
Learn more about glycolysis here:
brainly.com/question/737320
#SPJ1
<span>0.650 kg... I think,
But what are the answer choices?</span>
Answer:
a star shines due to thermonuclear fusion
Explanation:
13.6
a) yes Pb is more reactive that Ag, Pb before Ag
b) no, Cu after H
c) yes, Cl2 is more active than I2
4) yes, Mg is more active
13.7 (as I think)
Al ³⁺ more active than Zn²⁺, Mn can react with Zn²⁺, but not with Al ³⁺ , because Mn after Al but before Zn