Answer:
Part A:
Charge is 
Configuration is 
Part B:
Charge is 
Configuration is 
Part C:
Charge is 
Configuration is 
Explanation:
Monatomic ions:
These ions consist of only one atom. If they have more than one atom then they are poly atomic ions.
Examples of Mono Atomic ions: 
Part A:
For P:
Phosphorous (P) has 15 electrons so it require 3 more electrons to stabilize itself.
Charge is 
Full ground-state electron configuration of the mono atomic ion:

Part B:
For Mg:
Magnesium (Mg) has 12 electrons so it requires 2 electrons to lose to achieve stable configuration.
Charge is 
Full ground-state electron configuration of the mono atomic ion:

Part C:
For Se:
Selenium (Se) has 34 electrons and requires two electrons to be stable.
Charge is 
Full ground-state electron configuration of the mono atomic ion:

Answer: The reaction order with respect to A is m
Explanation:
Order of the reaction is defined as the sum of the concentration of terms on which the rate of the reaction actually depends. It is the sum of the exponents of the molar concentration in the rate law expression.
Elementary reactions are defined as the reactions for which the order of the reaction is same as its molecularity and order with respect to each reactant is equal to its stoichiometric coefficient as represented in the balanced chemical reaction.
For the given reaction:
![Rate=k[A]^m[B]^n](https://tex.z-dn.net/?f=Rate%3Dk%5BA%5D%5Em%5BB%5D%5En)
In this equation, the order with respect to each reactant is not equal to its stoichiometric coefficient which is represented in the balanced chemical reaction.
Hence, this is not considered as an elementary reaction.
Order with respect to A = m
Order with respect to B = n
Overall order = m+n
Thus order with respect to A is m.
Wavelength of the light is 2.9 × 10⁻⁷ m.
<u>Explanation:</u>
Planck - Einstein equation shows the relationship between the energy of a photon and its frequency, and they are directly proportional to each other and it is given by the equation as E = hν,
where E is the energy of the photon
h is the Planck's constant = 6.626 × 10⁻³⁴ J s
ν is the frequency
From the above equation, we can find the frequency by rearranging the equation as,
ν =
= 
Now the frequency and the wavelength are in inverse relationship with each other.
ν × λ = c
It can be rearranged to get λ as,
λ = c / ν
= 
So wavelength is 2.9 × 10⁻⁷ m.
Answer:
5- number of electrons=11
Explanation:
in a neutral atom number of protons=number of electrons which in this case=11
Im working on science too!! I would help you but the attachment isn't pulling up..