Answer: Frost weathering is a collective term for several mechanical weathering processes induced by stresses created by the freezing of water into ice.
32g of oxygen is required to burn 4g of hydrogen.
Define molecular mass.
A specific molecule's mass is expressed in daltons and is known as the molecular mass (m) (Da or u). Due to the varying isotopes of an element that they contain, multiple molecules of the same substance can have distinct molecular weights.
The total atomic mass of every atom in a molecule, calculated using a scale with hydrogen, carbon, nitrogen, and oxygen having atomic masses of 1, 12, 14, and 16, respectively. For instance, water has a molecular mass of 18 (2 + 16), which consists of two hydrogen atoms and one oxygen atom. known also as molecular weight.
In ,2H2+O2-----> 2H2O
H 2 molecules have a mass of 2 g/mol.
The molecular weight of oxygen is 32 g/mol.
When the chemical equation is balanced,
To totally react, 32 g of oxygen are needed for every 22=4 g of hydrogen.
To know more about molecular mass use link below:
brainly.com/question/21334167
#SPJ1
1. Subscript is below
2. Coefficient large 2 indicates the number of moles
3. Atoms
1/2 O2 + H2 —> H2O
It’s the atoms that balance on each side
Notes that 1/2 is the coefficient and 2 is the subscript in H2 and H2O
Answer:
Carbon dioxide is moving out of the living things.
Explanation:
The food materials eaten by living things contain carbon in the form of complex organic matter. When living things feed, they ingest this complex organic material into their bodies.
During the process of digestion, this complex organic material is broken down to give glucose. Glucose is the energy molecule in living things. Excess glucose in the body is stored as glycogen.
During cellular respiration, glucose is broken down to release carbon dioxide. Hence, at night when the giraffe has stopped eating, cellular respiration continues to occur and carbon dioxide is released, that is, carbon dioxide continues to move out of living things at night.
Explanation:
so for this u have to use this equation where
Moles = number of particle/6.02×10^23
= 3.045 × 10^24/6.02×10^23
= 5.0581
write it to 3 S.F so 5.06 moles