Solubility of barium chloride at 30 degree Celsius is 38.2g /100 g water and solubility of barium chloride at 60 degree Celsius is 46.6 g / 100 g water.
The quantity of barium chloride that is dissolved in water at 30 degree Celsius = 38.2 * [150/100] = 57.30 g.
The quantity of barium chloride that will be dissolved in water at 60 degree Celsius = 46.6 * [150/100] = 69.90 g
The difference between these quantities is the amount of barium chloride that can be dissolved by heating the barium chloride to 60 degree Celsius.
69.90 - 57.30 = 12.60 g. Therefore, 12.60 g of barium chloride can still be dissolved in the water by heating the water to 60 degree Celsius.
Answer:
The answer is given below in the picture
Explanation:please check it
Answer:
37.3
263.5
Explanation:
The scale measures hundreds of units, tens of units, units, and parts of units (1 decimal place.
Scale 1
Hundreds 0 * 100 = 0
Tens: 3 * 10 = 30
Units: 7 * 1 = 7
1/10 unit = 3* 0.1 = 0.3
Total 30 + 7 + 0.3 = 37.3
Scale 2
Hundreds 2 * 100 = 200
Tens: 6 * 10 = 60
Units: 3 * 1 = 3
1/10 unit = 5* 0.1 = 0.5
Total = 200 + 60 + 3 + 0.5 = 263.5
Answer:
Oxygen is in group 16/VIA, which is called the chalcogens, and members of the same group have similar properties. Sulfur and selenium are the next two elements in the group, and they react with hydrogen gas (H2) in a manner similar to oxygen.
Explanation:
Answer:
23.0 s⁻¹ is rate constant
Explanation:
Using the Arrhenius equation:
k = A * e^(-Ea/RT)
Where k is rate constant
A is frequency factor (1.5x10¹¹s⁻¹)
Ea is activation energy = 55800J/mol
R is gas constant (8.314J/molK)
And T is absolute temperature (24°C + 273 = 297K)
Replacing:
k = 1.5x10¹¹s⁻¹ * e^(-55800J/mol/8.314J/molK*297K)
k = 1.5x10¹¹s⁻¹ * 1.53x10⁻¹⁰
k = 23.0 s⁻¹ is rate constant i hope this helpsss
Explanation: