Check the picture below.
so let's find the lengths of those two sides in red, since are the length and width of the rectangle.
![\bf ~~~~~~~~~~~~\textit{distance between 2 points} \\\\ (\stackrel{x_1}{-6}~,~\stackrel{y_1}{3})\qquad (\stackrel{x_2}{-3}~,~\stackrel{y_2}{6})\qquad \qquad d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ d = \sqrt{[-3-(-6)]^2+[6-3]^2}\implies d=\sqrt{(-3+6)^2+(6-3)^2} \\\\\\ d=\sqrt{9+9}\implies \boxed{d=\sqrt{18}} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%20%5C%5C%5C%5C%20%28%5Cstackrel%7Bx_1%7D%7B-6%7D~%2C~%5Cstackrel%7By_1%7D%7B3%7D%29%5Cqquad%20%28%5Cstackrel%7Bx_2%7D%7B-3%7D~%2C~%5Cstackrel%7By_2%7D%7B6%7D%29%5Cqquad%20%5Cqquad%20d%20%3D%20%5Csqrt%7B%28%20x_2-%20x_1%29%5E2%20%2B%20%28%20y_2-%20y_1%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20d%20%3D%20%5Csqrt%7B%5B-3-%28-6%29%5D%5E2%2B%5B6-3%5D%5E2%7D%5Cimplies%20d%3D%5Csqrt%7B%28-3%2B6%29%5E2%2B%286-3%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20d%3D%5Csqrt%7B9%2B9%7D%5Cimplies%20%5Cboxed%7Bd%3D%5Csqrt%7B18%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\bf ~~~~~~~~~~~~\textit{distance between 2 points} \\\\ (\stackrel{x_1}{-6}~,~\stackrel{y_1}{3})\qquad (\stackrel{x_2}{-2}~,~\stackrel{y_2}{-1})~\hfill d=\sqrt{[-2-(-6)]^2+[-1-3]^2} \\\\\\ d=\sqrt{(-2+6)^2+(-1-3)^2}\implies d=\sqrt{16+16}\implies \boxed{d=\sqrt{32}} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{area of the rectangle}}{(\sqrt{18})(\sqrt{32})}\implies \sqrt{18\cdot 32}\implies \sqrt{576}\implies 24](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%20%5C%5C%5C%5C%20%28%5Cstackrel%7Bx_1%7D%7B-6%7D~%2C~%5Cstackrel%7By_1%7D%7B3%7D%29%5Cqquad%20%28%5Cstackrel%7Bx_2%7D%7B-2%7D~%2C~%5Cstackrel%7By_2%7D%7B-1%7D%29~%5Chfill%20d%3D%5Csqrt%7B%5B-2-%28-6%29%5D%5E2%2B%5B-1-3%5D%5E2%7D%20%5C%5C%5C%5C%5C%5C%20d%3D%5Csqrt%7B%28-2%2B6%29%5E2%2B%28-1-3%29%5E2%7D%5Cimplies%20d%3D%5Csqrt%7B16%2B16%7D%5Cimplies%20%5Cboxed%7Bd%3D%5Csqrt%7B32%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Barea%20of%20the%20rectangle%7D%7D%7B%28%5Csqrt%7B18%7D%29%28%5Csqrt%7B32%7D%29%7D%5Cimplies%20%5Csqrt%7B18%5Ccdot%2032%7D%5Cimplies%20%5Csqrt%7B576%7D%5Cimplies%2024)
25 degrees is the answer. CBE is supplementary to ABC. That means those two angles add up to 180 degrees.
this is ur answer i hope u do well good luck:
Answer:
Don't quote me on this but it's probably C. 12c ≥ 88
Step-by-step explanation:
This is because he packages 88 eggs <em>into </em>cartons of 12.
88/12 is 7.33333... so it makes sense to have a greater or equal amount of eggs. If you multiply 7.333333... by 12, each additional 3 gets you closer to 88 so again, makes sense to have more.
The graph that can represent the data most accurately is (a) The y-axis of a bar graph starts at zero fish. One bar is 24 units, another bar is 51 units, and the third bar is 36 units
The given parameters are:
- Aquarium A: 24 fishes
- Aquarium B: 51 fishes
- Aquarium C: 36 fishes
The above dataset can be represented on a bar graph, where the lengths of the bars represent the number of fishes in each aquarium
Hence, the graph that can represent the data most accurately is (a)
Read more about graphs at:
brainly.com/question/25677468