Answer:
one at the edge
Explanation:
The relation between the linear velocity and the angular velocity is given by
v = r x ω
Where, v be the linear velocity, ω be the angular velocity and r be the radius of the circular path.
As the angular velocity is constant, thus, the linear velocity depends on the radius of circular path.
So, the horse which is near to the edge has maximum radius of circular path in which it is rotating. So, the horse which is at the edge of the merry go round has maximum linear speed.
Answer:
The voltage is
Explanation:
From the question we are told that
The time that has passed is 
Here
is know as the time constant
The voltage of the power source is 
Generally the voltage equation for charging a capacitor is mathematically represented as
![V = V_b [1 - e^{- \frac{t}{\tau} }]](https://tex.z-dn.net/?f=V%20%3D%20%20V_b%20%20%5B1%20-%20e%5E%7B-%20%5Cfrac%7Bt%7D%7B%5Ctau%7D%20%7D%5D)
=> ![V = V_b [1 - e^{- \frac{\frac{\tau}{2}}{\tau} }]](https://tex.z-dn.net/?f=V%20%3D%20%20V_b%20%20%5B1%20-%20e%5E%7B-%20%5Cfrac%7B%5Cfrac%7B%5Ctau%7D%7B2%7D%7D%7B%5Ctau%7D%20%7D%5D)
=> ![V = V_b [1 - e^{- \frac{\tau}{2\tau} }]](https://tex.z-dn.net/?f=V%20%3D%20%20V_b%20%20%5B1%20-%20e%5E%7B-%20%5Cfrac%7B%5Ctau%7D%7B2%5Ctau%7D%20%7D%5D)
=> ![V = V_b [1 - e^{- \frac{1}{2} }]](https://tex.z-dn.net/?f=V%20%3D%20%20V_b%20%20%5B1%20-%20e%5E%7B-%20%5Cfrac%7B1%7D%7B2%7D%20%7D%5D)
=>
The gravitational field strength is approximately equal to 10 N.
<u>Explanation:</u>
Gravitational field strength is the measure of gravitational force acting on any object placed on the surface of the planet. Generally, the mass of the object is considered as 1 kg.
So the gravitational field strength will be equal to the gravitational force acting on the object.
The formula for gravitational field strength is

Here g is the gravitational field strength, m is the mass of the object placed on the surface and F is the gravitational force acting on the object.
Since, the mass of any object placed on the surface of earth will be negligible compared to the mass of Earth, so the mass of the object is considered as 1 kg.
Then the g = F
And 
Here G is the gravitational constant, M is the mass of Earth and m is the mass of the object placed on the surface, while r is the radius of the Earth.


So, the gravitational field strength is approximately equal to 10 N.
answer:They are too close to the sun!
Explanation:Because Mercury is so close to the Sun and its gravity, it wouldn't be able to hold on to its own moon. Any moon would most likely crash into Mercury or maybe go into orbit around the Sun and eventually get pulled into it.Same with Venus!