<span>Exothermic reaction is a chemical reaction that releases energy. This reaction releases heat energy or light .
In an endotermic reaction energy is used.
Enthaply is the heat energy change , delta H.
If the sum of the enthalpies of the reactans is greater than the products the reaction is exothermic. If the products side has a larger enthaply than the process is endothermic. So, if delta H is negative then the process is exothermic. If delta H is positive, than the process is endothermic.
Exothermic are: A+BC -> AB+C
A2+B2 -> 2AB
Endothermic are:AB+C -> AC+B
A2 + C2 -> 2AC
B2+C2 -> 2BC</span>
Magnitude of displacement = 
Adding the squares gives displacement = 
Displacement =
≈ 724.7m
<h3><u>Given</u> :</h3>
Three identical resistors of resistances 5Ω, 10Ω and 30Ω are connected with a battery of 12V
<h3><u>To Find</u> :</h3>
We have to find current through the each resistor and equivalent resistance of circuit
<h3><u>SoluTion</u> :</h3>
➝ Equivalent resistance of series connection is given by
➝ We know that, Equal current flow through each resistor in series connection.
➝ As per ohm's law, Current flow through a conductor is directly proportional to the applied potential difference.
◈ <u>Equivalent resistance</u> :
⇒ Req = R1 + R2 + R3
⇒ Req = 5 + 10 + 30
⇒ <u>Req = 45Ω</u>
◈ <u>Current flow in circuit</u> :
⇒ V = IReq
⇒ 12 = I × 45
⇒ <u>I = 0.27A</u>
፨ Therefore, 0.27A current will flow through each resistor.
The first step would be to create an electromagnet. You can create an electromagnet by winding a copper wire around the nail, the connect both ends to the battery. A current would start flowing around the nail through the wire, creating an electromagnet with its own magnetic field. Next, bringing the electromagnet to the mixture of copper and iron would slowly attract the pieces of iron (as copper is weakly magnetic). Do this slowly and the iron pieces would all slowly be separated from the copper pieces.