Answer:
Explanation:
Let's look at a mathematical representation of this. The equation for tis is just a souped up version of Newton's 2nd Law:
F - f = ma. It an object is moving at a constant speed, the acceleration of that object is 0. That changes this equation to
F = f which states that the applied Force equals the frictional force, choice a.
There’s not enough info here i’m sorry
You do this one just like the other one that I just solved for you.
For this one ...
The density of the object is 2.5 gm/cm³.
We know that every cm³ of it we have contains 2.5 gm of mass.
We have to find out how many cm³ we have.
The question tells us: We have 2.0 cm³.
Each cm³ of space that the object occupies contains 2.5 gm of mass.
So the 2.0 cm³ that we have contains (2 x 2.5 gm) = 5 gms.
That's the mass of our object.
Answer:
78.4 m
Explanation:
To obtain the height of the cliff;
We can use the Relation to obtain the final velocity, v
v = u + at
a = acceleration due to gravity = 9.8m/s²
v = 0 + (9.8*4)
v = 0 + 39.2
v = 39.2 m/s
To obtain the Height, S
v² = u² + 2aS
39.2^2 = 0 + 2(9.8)S
39.2^2 = 0 + 19.6S
1536.64 = 19.6S
S = 1536.64 / 19.6
S = 78.4 m