Use the Ideal Gas Law to the air in the tire :
( P ) ( V ) = ( n ) ( R ) ( T )
n = ( P ) ( V ) / ( R ) ( T )
P = P gauge + P baro = 31.2 psig + 14.8 psia = 46 psia
P = ( 46 psia ) ( 1 atm / 14.696 psia ) = 3.13 atm
n = ( P ) ( V ) / ( R ) ( T )
n = ( 3.13 atm ) ( 4.6 L ) / ( 0.08206 atm - L / mol - K ) ( 26.0 + 273.2 K )
n = 0.5864 moles
m = ( n ) ( M )
m = ( 0.5864 mol ) ( 28.96 g/ mol ) = 16.98 g
Answer:
Equal
Explanation:
The law of conservation of energy states that the total momentum before and after a collision are equal
In physics, the law of conservation of energy<span> states that the total</span>energy<span> of an isolated system remains constant—it is said to be conserved over time. </span>Energy<span> can neither be created nor destroyed; rather, it transforms from one form to another.</span>
Answer:
The acceleration of the snowball is 0.3125
Explanation:
The initial speed of the snowball up the hill, u = 0
The speed the snowball reaches, v = 5 m/s
The length of the hill, s = 40 m
The equation of motion of the snowball given the above parameters is therefore;
v² = u² + 2·a·s
Where;
a = The acceleration of the snowball
Plugging in the values, we have;
5² = 0² + 2 × a × 40
∴ 2 × 40 × a = 5² = 25
80 × a = 25
a = 25/80 = 5/16
a = The acceleration of the snowball = 5/16 m/s².
The acceleration of the snowball = 5/16 m/s² = 0.3125 m/s² .
Answer:
The approximate magnitude of the force of air resistance is 540 N.
Explanation: