Answer:
Assuming that the length of the magnet is much smaller than the separation between it and the charge. As a result of magnetic interaction (i.e., ignore pure Coulomb forces) between the charge and the bar magnet, the magnet will not experience any torque at all - option A
Explanation:
Assuming that the length of the magnet is much smaller than the separation between it and the charge. As a result of magnetic interaction (i.e., ignore pure Coulomb forces) between the charge and the bar magnet, the magnet will not experience any torque at all; the reason being that: no magnetic field is being produced by a charge that is static. Only a moving charge can produce a magnetic effect. And the magnet can not have any torque due to its own magnetic lines of force.
Inelastic.
If it was elastic, they'd bump right off each other. But since they've been locked, or stuck together, this is inelastic.
Answer:
<em><u>NA2SO3</u></em> is the reactant in the reaction
Explanation:
The substances which take part in a chemical reaction are called <em><u>reactants</u></em>
<em>HOPE </em><em>IT </em><em>HELPS </em>
<em>HAVE </em><em>A </em><em>NICE </em><em>DAY </em><em>:</em><em>)</em>
<em>XxYourBabyGirlxX2</em>
Answer:
The periodic table illustrate some of the elements from Hydrogen to Calcium