1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rufina [12.5K]
3 years ago
7

Plzz answer this question correctly

Physics
1 answer:
Leno4ka [110]3 years ago
6 0

Answer:

by reducing friction.....

You might be interested in
In the design of a rapid transit system, it is necessary to balance the average speed of a train against the distance between st
bekas [8.4K]

Answer:

a) t = 746 s

b) t = 666 s

Explanation:

a)

  • Total time will be the sum of the partial times between stations plus the time stopped at the stations.
  • Due to the distance between stations is the same, and the time between stations must be the same (Because the train starts from rest in each station) we can find total time, finding the time for any of the distance between two stations, and then multiply it times the number of distances.
  • At any station, the train starts from rest, and then accelerates at 1.1m/s2 till it reaches to a speed of 95 km/h.
  • In order to simplify things, let's first to convert this speed from km/h to m/s, as follows:

       v_{1} = 95 km/h *\frac{1h}{3600s}*\frac{1000m}{1 km} = 26.4 m/s  (1)

  • Applying the definition of acceleration, we can find the time traveled by the train before reaching to this speed, as follows:

       t_{1} = \frac{v_{1} }{a_{1} } = \frac{26.4m/s}{1.1m/s2} = 24 s (2)

  • Next, we can find the distance traveled during this time, assuming that the acceleration is constant, using the following kinematic equation:

       x_{1} = \frac{1}{2} *a_{1} *t_{1} ^{2} = \frac{1}{2} * 1.1m/s2*(24s)^{2} = 316.8 m  (3)

  • In the same way, we can find the time needed to reach to a complete stop at the next station, applying the definition of acceleration, as follows:

       t_{3} = \frac{-v_{1} }{a_{2} } = \frac{-26.4m/s}{-2.2m/s2} = 12 s (4)

  • We can find the distance traveled while the train was decelerating as follows:

       x_{3} = (v_{1} * t_{3})   + \frac{1}{2} *a_{2} *t_{3} ^{2} \\ = (26.4m/s*12s) - \frac{1}{2} * 2.2m/s2*(12s)^{2} = 316.8 m - 158.4 m = 158.4m  (5)

  • Finally, we need to know the time traveled at constant speed.
  • So, we need to find first the distance traveled at the constant speed of 26.4m/s.
  • This distance is just the total distance between stations (3.0 km) minus the distance used for acceleration (x₁) and the distance for deceleration (x₃), as follows:
  • x₂ = L - (x₁+x₃) = 3000 m - (316.8 m + 158.4 m) = 2525 m (6)
  • The time traveled at constant speed (t₂), can be found from the definition of average velocity, as follows:

       t_{2} = \frac{x_{2} }{v_{1} } = \frac{2525m}{26.4m/s} = 95.6 s   (7)

  • Total time between two stations is simply the sum of the three times we have just found:
  • t = t₁ +t₂+t₃ = 24 s + 95.6 s + 12 s = 131.6 s (8)
  • Due to we have six stations (including those at the ends) the total time traveled while the train was moving, is just t times 5, as follows:
  • tm = t*5 = 131.6 * 5 = 658.2 s (9)
  • Since we know that the train was stopped at each intermediate station for 22s, and we have 4 intermediate stops, we need to add to total time 22s * 4 = 88 s, as follows:
  • Ttotal = tm + 88 s = 658.2 s + 88 s = 746 s (10)

b)

  • Using all the same premises that for a) we know that the only  difference, in order to find the time between stations, will be due to the time traveled at constant speed, because the distance traveled at a constant speed will be different.
  • Since t₁ and t₃ will be the same, x₁ and x₃, will be the same too.
  • We can find the distance traveled at constant speed, rewriting (6) as follows:
  • x₂ = L - (x₁+x₃) = 5000 m - (316.8 m + 158.4 m) = 4525 m (11)
  • The time traveled at constant speed (t₂), can be found from the definition of average velocity, as follows:

       t_{2} = \frac{x_{2} }{v_{1} } = \frac{4525m}{26.4m/s} = 171.4 s   (12)

  • Total time between two stations is simply the sum of the three times we have just found:
  • t = t₁ +t₂+t₃ = 24 s + 171.4 s + 12 s = 207.4 s (13)
  • Due to we have four stations (including those at the ends) the total time traveled while the train was moving, is just t times 3, as follows:
  • tm = t*3 = 207.4 * 3 = 622.2 s (14)
  • Since we know that the train was stopped at each intermediate station for 22s, and we have 2 intermediate stops, we need to add to total time 22s * 2 = 44 s, as follows:
  • Ttotal = tm + 44 s = 622.2 s + 44 s = 666 s (15)
7 0
2 years ago
Astronaut John's mass is 75 kg. He is floating at rest in the space station holding a 5.0 kg pillow. When his friend Bill enters
Murljashka [212]

Answer:

my name is Deepika Pandey anion I am 9 years old my father name is Dinesh Pandey my name is and my sister name is sister name is a

4 0
2 years ago
It takes 15 min to drive 6.0 mi in a straight line to the local hospital. It takes 10 min to go the last 3.0 mi, 2.0 min to go t
Gala2k [10]

Answer:

36.87 km/h

Explanation:

Convert all the units in SI system

1 mile = 1609.34 m

d1 = 6 mi = 9656.04 m

t1 = 15 min = 15 x 60 = 900 s

d2 = 3 mi = 4828.02 m

t2 = 10 min = 10 x 60 = 600 s

d3 = 1 mi = 1609.34 m

t3 = 2 min = 2 x 60 = 120 s

d4 = 0.5 mi = 804.67 m

t4 = 0.5 min = 0.5 x 60 = 30 s

Total distance, d = d1 + d2 + d3 + d4

d = 9656.04 + 4828.02 +  1609.34 + 804.67 = 16898.07 m = 16.898 km

total time, t = t1 + t2 + t3 + t4

t = 900 + 600 + 120 + 30 = 1650 s = 0.4583 h

The ratio of the total distance covered to the total time taken is called average speed.

Average speed = 16.898 / 0.4583 = 36.87 km/h

6 0
3 years ago
On physical science so what is Forcewhat is force and its unit ​
ivann1987 [24]

Answer:force is an agent which change the state of rest or uniform motion of a body. The unit of force newton

Explanation:

Force is that which change the state of rest or uniform motion of an object.the unit of force is newton or kgm/s^2

8 0
3 years ago
Light rays in a material with index of refrection 1.35 1.35 can undergo total internal reflection when they strike the interface
nekit [7.7K]

Answer:

1.30

Explanation:

To calculate the critical angle we have ti use the formula:

sin\theta_c=\frac{n_2}{n_1}

where theta_c is the critical angle, n1 is the index of refraction of the material where the light is totally reflected, and n2 is the refractive index of the other material.

By taking n_2 and replacing we obtain:

n_2=n_1sin\theta_c=(1.35)sin75.1\°=1.30

hope this helps!!

6 0
3 years ago
Other questions:
  • The density of an object is 1.23 g/cm3. In which of the following materials will it float
    6·2 answers
  • If you are driving 120 km/h along a straight road and you look to the side for 2.0 s , how far do you travel during this inatten
    12·1 answer
  • Kinetic energy is the energy an object has because it is A. At rest B. Moving C. Stretched D. Above the ground
    12·1 answer
  • A person running has a momentum of 720 kg m/s and is traveling at a velocity of 5 m/s. What is his mass?
    15·1 answer
  • A circular disk of radius 2.0 m rotates, starting from rest, with a constant angular acceleration of 20.0 rad/s2 . What is the t
    11·1 answer
  • A school bus moves down a road, dropping off students after school. The bus slows down from a speed of 15 meters per second to a
    6·1 answer
  • When you walk across the ground and push on it with your feet...
    7·2 answers
  • Que es la aceleración , tipos y formula​
    5·1 answer
  • What is artificial insemination as used in animal production
    8·1 answer
  • Describe at least one technological application of radioactive decay that can benefit human health.
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!