Answer:

Explanation:
<u>Charge of an Electron</u>
Since Robert Millikan determined the charge of a single electron is

Every possible charged particle must have a charge that is an exact multiple of that elemental charge. For example, if a particle has 5 electrons in excess, thus its charge is 
Let's test the possible charges listed in the question:
. We have just found it's a possible charge of a particle
. Since 3.2 is an exact multiple of 1.6, this is also a possible charge of the oil droplets
this is not a possible charge for an oil droplet since it's smaller than the charge of the electron, the smallest unit of charge
cannot be a possible charge for an oil droplet because they are not exact multiples of 1.6
Finally, the charge
is four times the charge of the electron, so it is a possible value for the charge of an oil droplet
Summarizing, the following are the possible values for the charge of an oil droplet:

In order to draw the free body diagram, first let's calculate the friction force acting on the crate:

Since the friction force is greater than the force applied, the crate will not move, and the friction force will be equal to the force applied.
The weight force is equal to 40 * 9.8 = 392 N.
So, drawing the diagram, we have:
The pressure at the bottom of a column of fluid in a container
depends only on the depth of the fluid, not on the shape of the
container. The pressure is simply the result of the weight of the
fluid resting on the bottom.
Answer:
Explanation:
The 2 equations we need here are, first:
and then once we solve for the acceleration here:
Δx
Solving for acceleration:
and now we will use that in the other equation:
Δx and
36 = 16 +
Δx and
20 =
Δx and
Δx so
Δx = 50 m