CO2 and N2O keep the energy that gets to Earth from the sun inside the atmosphere. Without greenhouse gases, our planet would be too cold. But due to the recent increase in greenhouse gases, more energy released from the sun is contained in the Earth, heating it up.
<span>Even in space, there is still presence of gravity. The
cause of weightlessness is not how far above the earth the space shuttle is but
rather how fast it is travelling. The shuttle is in free fall causing
weightlessness, but it is travelling fast enough to miss the earth as it falls.
Similarly, the airplane could also provide weightlessness if it went free fall
as well. However, that ends as the plane hits the ground. </span>
The formula is=1/2(m x v^2)
so = 1/2*(0.05)*(310)^2
ans is =2402.5 joules
Kepler's first law - sometimes referred to as the law of ellipses - explains that planets are orbiting the sun in a path described as an ellipse. An ellipse can easily be constructed using a pencil, two tacks, a string, a sheet of paper and a piece of cardboard. Tack the sheet of paper to the cardboard using the two tacks. Then tie the string into a loop and wrap the loop around the two tacks. Take your pencil and pull the string until the pencil and two tacks make a triangle (see diagram at the right). Then begin to trace out a path with the pencil, keeping the string wrapped tightly around the tacks. The resulting shape will be an ellipse. An ellipse is a special curve in which the sum of the distances from every point on the curve to two other points is a constant. The two other points (represented here by the tack locations) are known as the foci of the ellipse. The closer together that these points are, the more closely that the ellipse resembles the shape of a circle. In fact, a circle is the special case of an ellipse in which the two foci are at the same location. Kepler's first law is rather simple - all planets orbit the sun in a path that resembles an ellipse, with the sun being located at one of the foci of that ellipse.
Answer:
Radio waves
Explanation:
The electromagnetic spectrum includes all different types of waves, which are usually classified depending on their frequency. Ordering them from the highest frequency to the lowest frequency, they are:
- Gamma rays
- X-rays
- Ultraviolet
- Visible light
- Infrared radiation
- Microwaves
- Radio waves
Radio waves are the electromagnetic waves with lowest frequency, their frequency is lower than 300 GHz (
) and therefore they are the electromagnetic waves with lowest energy (in fact, the energy of an electromagnetic wave is proportional to its frequency). They are generally used for radio and telecommunications since this type of waves can travel up to long distances.