The decay of a radioactive isotope can be predicted using the formula: A = Ao[2^(-t/T_0.5)] where A is the amount after time t, Ao is the original amount and T_0.5 is the half-life. Using the equation and the given values, 0.888 g of the sample will remain after 72 minutes.
Answer:
Cl⁻, Na⁺, OH⁻
Explanation:
The titration is:
CuCl₂(aq) + 2 NaOH(aq) → Cu(OH)₂(s) + 2 NaCl(aq)
In solution, before the reaction, the ions are Cu²⁺ and Cl⁻. The addition of NaOH (Na⁺ + OH⁻) produce the precipitation of Cu²⁺ forming Cu(OH)₂(s). When you reach the equivalence point, there is no Cu²⁺ because precipitates completely. All OH⁻ ions reacts when are added but when Cu²⁺ is finished, excess OH⁻ ions still in solution helping to detect the equivalence point.
Thus, ions present after the equivalence point are:<em> Cl⁻, Na⁺</em> (Don't react, spectator ions), and <em>OH⁻</em>.
Answer:- 12 km = 12000 m
Solution:- It's a metric unit conversion where we are asked to convert 12 km to m where km stands for kilometer and m stands for meter.
In metric conversions, kilo means 1000.
So, 1 km = 1000 m
It means, we multiply the given km by 1000 to get the answer in m as:

= 12000 m
Hence, 12 km = 12000 m.
Given what we know, we can confirm that the term used to describe an offspring that possesses the same trait for both genes is homzygous.
<h3>What does it mean to be homzygous?</h3>
This is as indicated in the question, it refers to organisms that have inherited the same allele for a gene from both parents. Meaning that both variations of said gene in this individual are the same and therefore, there is no possibility of a distinct expression.
Therefore, we can confirm that the term used to describe an offspring when it possesses the same trait for both genes is homzygous.
To learn more about genetics visit:
brainly.com/question/12985618?referrer=searchResults