Answer:
d. 3 signals: a singlet, a doublet, and a septet
Explanation:
In this case, we can start with the structure of
. When we draw the molecule we will obtain <u>2-methoxypropane</u> (see figure 1).
In 2-methoxypropane we will have three signals. The signal for the
groups in the left, the
and the
in the right. Lets analyse each one:
-)
in the right
In this carbon, we dont have any hydrogen as neighbors. Therfore we will have <u>singlet</u> signal in this carbon.
-)
In this case, we have 6 hydrogen neighbors ( the two methyl groups in the left). So, if we follow the <u>n + 1 rule</u> (where n is the amount of hydrogen neighbors):
For this carbon we will have a <u>septet</u>.
-)
in the left
In this case we have only 1 hydrogen neighbor (the hydrogen in
). So, if we use the n+1 rule we will have:
We will have a doublet
With all this in mind the answer would be:
<u>d. 3 signals: a singlet, a doublet, and a septet
</u>
<u />
See figure 2 to further explanations
Here is the correct option: According to Newton's third law of motion, the balloon is pushed forward as the air is forced out. Newton's third law of motion states that for every action there is an equal and opposite reaction. This means that in every interaction, there is a pair of force that is acting on the interacting objects, the size of the force on the first object is equal to the size of the force on the second object.
Answer:
Answer choice B
Explanation:
Since you do not know the volume of the liquid in each beaker, the one in the smaller beaker could have more substance and therefore more thermal energy. If they had the same amount of substance, then the more voluminous one would radiate faster. However, since you do not know this, there is no way to tell. PM me if you have more questions. Hope this helps!
The balanced chemical equation is given as:
2CH3CH2OH(l) → CH3CH2OCH2CH3(l) + H2O(l)
We are given the yield of CH3CH2OCH2CH3 and the amount of ethanol to be used for the reaction. These values will be the starting point for the calculations.
Theoretical amount of product produced:
329 g CH3CH2OH ( 1 mol / 46.07 g ) ( 1 mol CH3CH2OCH2CH3 / 2 mol CH3CH2OH ) (74.12 g / mol ) = 264.66 g CH3CH2OCH2CH3
% yield = .775 = actual yield / 264.66
actual yield = 205.11 g CH3CH2OCH2CH3