Answer:
CaCO3 (s) → CaO (s) + CO2 (g)
The mass of carbonate that must have reacted was 43.03 grams
Explanation:
CaCO3 → CaO + CO2
Relation between reactant and product is 1:1
Let's apply the Ideal Gas Law to find out the moles of CO2 which were produced.
P . V = n . R . T
1 atm . 23 L = n . 0.082 L.atm/mol.K . 653K
(1atm . 23L) / (0.082 mol.K/L.atm . 653K) = n
0.43 moles = n
0.43 moles of CO2, were produced from 0.43 moles of CaCO3.
Molar weight of CaCO3 = 100.08 g/m
Mass = Molar weight . moles
Mass = 100.08 g/m 0.43 m = 43.03 g
Answer:
A. Carbon double bonded to oxygen and a hydroxyl group (OH).
Answer:
hahah animals in the world
A buffer is a solution that can resist pH change upon the addition of an acidic or basic components. It is able to neutralize small amounts of added acid or base, thus maintaining the pH of the solution relatively stable. This is important for processes and/or reactions which require specific and stable pH ranges. Buffer solutions have a working pH range and capacity which dictate how much acid/base can be neutralized before pH changes, and the amount by which it will change.