It is made up of mostly water and salt. Cytoplasm<span> is present within the cell membrane of all cell types and contains all organelles and cell parts.
The cytoplasm is like a </span><span>bathtub water because it holds a kind of jelly fluid just like a bathtub
</span>
eukaryote<span> is an </span>organism<span> with complex cells, or a single cell with a complex structure. </span><span>
</span>
Data:

n (Wave node)
V (Wave belly)
L (Wave length)
<span>The number of bells is equal to the number of the harmonic emitted by the string.
</span>

Wire 2 → 2º Harmonic → n = 2







Wire 1 → 1º Harmonic or Fundamental rope → n = 1



If, We have:
V = 42L
Soon:



Answer:
<span>The fundamental frequency of the string:
</span>
21 Hz
Answer:
4500 N
Explanation:
When a body is moving in a circular motion it will feel an acceleration directed towards the center of the circle, this acceleration is:
a = v^2/r
where v is the velocity of the body and r is the radius of the circumference:
Therefore, a body with mass m, will feel a force f:
f = m v^2/r
Therefore we need another force to keep the body(car) from sliding, this will be given by friction, remember that friction force is given a the normal times a constant of friction mu, that is:
fs = μN = μmg
The car will not slide if f = fs, i.e.
fs = μmg = m v^2/r
That is, the magnitude of the friction force must be (at least) equal to the force due to the centripetal acceleration
fs = (1000 kg) * (30m/s)^2 / (200 m) = 4500 N
Answer:
55.96kJ
Explanation:
Energy = mass of diethyl ether × enthalpy of vaporization of diethyl ether
Volume (v) = 200mL, density (d) = 0.7138g/mL
Mass = d × v = 0.7138 × 200 = 142.76g
Enthalpy of vaporization of diethyl ether = 29kJ/mol
MW of diethyl ether (C2H5)2O = 74g/mol
Enthalpy in kJ/g = 29kJ/mol ÷ 74g/mol = 0.392kJ/g
Energy = 142.76g × 0.392kJ/g = 55.96kJ
Answer:
v = 0
Explanation:
This problem can be solved by taking into account:
- The equation for the calculation of the period in a spring-masss system
( 1 )
- The equation for the velocity of a simple harmonic motion
( 2 )
where m is the mass of the block, k is the spring constant, A is the amplitude (in this case A = 14 cm) and v is the velocity of the block
Hence

and by reeplacing it in ( 2 ):

In this case for 0.9 s the velocity is zero, that is, the block is in a position with the max displacement from the equilibrium.