It is typically 30 km to 50 km thick.
<span>A mechanical wave is a wave that is not capable of transmitting its energy through a vacuum. Mechanical waves require a medium in order to transport their energy from one location to another. A sound wave is an example of a mechanical wave.</span>
I believe it’s called Alluvium! It’s where the river mouth is build up of gravel,sand,silt, and clay!!
Density = (mass) / (volume)
4,000 kg/m³ = (mass) / (0.09 m³)
Multiply each side
by 0.09 m³ : (4,000 kg/m³) x (0.09 m³) = mass
mass = 360 kg .
Force of gravity = (mass) x (acceleration of gravity)
= (360 kg) x (9.8 m/s²)
= (360 x 9.8) kg-m/s²
= 3,528 newtons .
That's the force of gravity on this block, and it doesn't matter
what else is around it. It could be in a box on the shelf or at
the bottom of a swimming pool . . . it's weight is 3,528 newtons
(about 793.7 pounds).
Now, it won't seem that heavy when it's in the water, because
there's another force acting on it in the upward direction, against
gravity. That's the buoyant force due to the displaced water.
The block is displacing 0.09 m³ of water. Water has 1,000 kg of
mass in a m³, so the block displaces 90 kg of water. The weight
of that water is (90) x (9.8) = 882 newtons (about 198.4 pounds),
and that force tries to hold the block up, against gravity.
So while it's in the water, the block seems to weigh
(3,528 - 882) = 2,646 newtons (about 595.2 pounds) .
But again ... it's not correct to call that the "force of gravity acting
on the block in water". The force of gravity doesn't change, but
there's another force, working against gravity, in the water.
Answer:
9 and 3 N
Explanation:
Forces in the same direction sum up to produce the resultant force;
One force subtract the other will give the resultant force when they are in opposite directions;
Lets say one direction is forwards and the opposite backwards;
We have one force, let's say force A, in the forwards direction and another force, force B, acting in the same (forwards) or opposite (backwards) direction;
If B is acting in the same direction, then the resultant force (in this case) will be as follows:
A + B = 12
If B is acting in the opposite direction, then the resultant force will be as follows:
A - B = 6
Summing the two equations will allow us to solve for A:
A + B + (A - B) = 12 + 6
2A = 18
A = 9
Substitute this into either of the above equations and we can solve for B:
(9) - B = 6
B = 9 - 6
B = 3