Given:
The mass of the copper cylinder is: m = 76.8 g = 0.0768 kg
The change in the temperature is: T = 86.5 deg C - 19.5 deg C = 67 deg C
The specific heat is: c = 0.092 cal/g.C
To find:
Heat energy needed to heat the copper cylinder.
Explanation:
The specific heat is defined as the amount of heat energy needed to raise the temperature of a substance by one degree celcius.
The expression relating heat Q, mass m, specific heat c and temperature difference T is:

Substitute the values in the above equation, we get:

Final answer:
473.40 calories of heat is required to heat the copper cylinder.
Answer:
a = - 3.75 m/s²
negative sign indicates deceleration here.
Explanation:
In order to find the constant deceleration of the car, as it stops, we will use the 3rd equation of motion. The 3rd equation of motion is as follows:
2as = Vf² - Vi²
a = (Vf² - Vi²)/2s
where,
a = deceleration of the car = ?
Vf = Final Velocity = 0 m/s (Since, the car finally stops)
Vi = Initial Velocity = 30 m/s
s = distance covered by the car = 120 m
Therefore,
a = [(0 m/s)² - (30 m/s)²]/(2)(120 m)
<u>a = - 3.75 m/s²</u>
<u>negative sign indicates deceleration here.</u>
Answer:
Newton's Cradle experiment perfectly demonstrates the law of conservation of momentum which states that in a closed system, momentum before the collision is equal to momentum after the collision of the system.
As the first ball swings in the air, it gains momentum. When it strikes the second ball, it loses momentum and second ball gains equal amount of momentum. The second ball transfers the momentum to third, then fourth and till the last. The last ball when gains the same momentum swings up in the air. This continues. This experiment is done in drag free condition. This means there is no loss of momentum or opposing forces present.
A boiling pot of water (the water travels in a current throughout the pot), a hot air balloon (hot air rises, making the balloon rise) , and cup of a steaming, hot liquid (hot air rises, creating steam) are all situations where convection occurs.
Read more on Brainly.com -
brainly.com/question/1581851#readmore
This is what wiki says hope it helps
A displacement is a vector whose length is the shortest distance from the initial to the final position of a point P.[1] It quantifies both the distance and direction of an imaginary motion along a straight line from the initial position to the final position of the point.
A displacement may be also described as a 'relative position': the final position of a point (Sf) relative to its initial position (Si), and a displacement vector can be mathematically defined as the difference between the final and initial position vectors: