Realistically would be 20.
Answer:
Step-by-step explanation:
65% of 51 = 
= 0.65 *51
= 33.15
Answer:
Step-by-step explanation:

Answer:
f(3) = 9
Step-by-step explanation:
f(x) = x^2
f(3) means "When x is 3" So, we substitute x with 3.
f(3) = 3^2
f(3) = 3 x 3 = 9
f(3) = 9
Answer:
the Inverse of the matrix is; A⁻¹
![= \left[\begin{array}{ccc}\frac{-3}{(2k)} &\frac{1}{k}&\frac{15}{(2k)}\\\frac{-3k+15}{(10k)}&\frac{-1}{k}&\frac{-75+13k}{(10k)}\\\frac{1}{2}&0&\frac{-5}{2}\end{array}\right]](https://tex.z-dn.net/?f=%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Cfrac%7B-3%7D%7B%282k%29%7D%20%26%5Cfrac%7B1%7D%7Bk%7D%26%5Cfrac%7B15%7D%7B%282k%29%7D%5C%5C%5Cfrac%7B-3k%2B15%7D%7B%2810k%29%7D%26%5Cfrac%7B-1%7D%7Bk%7D%26%5Cfrac%7B-75%2B13k%7D%7B%2810k%29%7D%5C%5C%5Cfrac%7B1%7D%7B2%7D%260%26%5Cfrac%7B-5%7D%7B2%7D%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
Given the data in the question;
Matrix A = ![\left[\begin{array}{ccc}-25&-25&-13\\k&0&3\\-5&-5&-3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-25%26-25%26-13%5C%5Ck%260%263%5C%5C-5%26-5%26-3%5Cend%7Barray%7D%5Cright%5D)
To find the Inverse of matrix A
A⁻¹ = Adj.A / det.A
so
Determinant of the matrix A will be
|A| = -25( 0 + 15) + 25( -3K + 15 ) - 13( -15K + 0 )
= -375 - 75K + 375 + 65K
= -10K
Now, the adjoin of matrix A will be
Adj.A = ![\left[\begin{array}{ccc}15&-10&-75\\3k-15&10&75-13k\\-5k&0&25k\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D15%26-10%26-75%5C%5C3k-15%2610%2675-13k%5C%5C-5k%260%2625k%5Cend%7Barray%7D%5Cright%5D)
The Inverse of the matrix is;
A⁻¹ = Adj.A / det.A
![= \frac{1}{-10k} \left[\begin{array}{ccc}15&-10&-75\\3k-15&10&75-13k\\-5k&0&25k\end{array}\right]](https://tex.z-dn.net/?f=%3D%20%5Cfrac%7B1%7D%7B-10k%7D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D15%26-10%26-75%5C%5C3k-15%2610%2675-13k%5C%5C-5k%260%2625k%5Cend%7Barray%7D%5Cright%5D)
![= \left[\begin{array}{ccc}\frac{15}{-10k} &\frac{-10}{-10k}&\frac{-75}{-10k}\\\frac{3k-15}{-10k}&\frac{10}{-10k}&\frac{75-13k}{-10k}\\\frac{-5k}{-10k}&\frac{0}{-10k}&\frac{25k}{-10k}\end{array}\right]](https://tex.z-dn.net/?f=%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Cfrac%7B15%7D%7B-10k%7D%20%26%5Cfrac%7B-10%7D%7B-10k%7D%26%5Cfrac%7B-75%7D%7B-10k%7D%5C%5C%5Cfrac%7B3k-15%7D%7B-10k%7D%26%5Cfrac%7B10%7D%7B-10k%7D%26%5Cfrac%7B75-13k%7D%7B-10k%7D%5C%5C%5Cfrac%7B-5k%7D%7B-10k%7D%26%5Cfrac%7B0%7D%7B-10k%7D%26%5Cfrac%7B25k%7D%7B-10k%7D%5Cend%7Barray%7D%5Cright%5D)
![= \left[\begin{array}{ccc}\frac{-3}{2k} &\frac{1}{k}&\frac{15}{2k}\\\frac{-3k+15}{10k}&\frac{-1}{k}&\frac{-75+13k}{10k}\\\frac{1}{2}&0&\frac{-5}{2}\end{array}\right]](https://tex.z-dn.net/?f=%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Cfrac%7B-3%7D%7B2k%7D%20%26%5Cfrac%7B1%7D%7Bk%7D%26%5Cfrac%7B15%7D%7B2k%7D%5C%5C%5Cfrac%7B-3k%2B15%7D%7B10k%7D%26%5Cfrac%7B-1%7D%7Bk%7D%26%5Cfrac%7B-75%2B13k%7D%7B10k%7D%5C%5C%5Cfrac%7B1%7D%7B2%7D%260%26%5Cfrac%7B-5%7D%7B2%7D%5Cend%7Barray%7D%5Cright%5D)
![= \left[\begin{array}{ccc}\frac{-3}{(2k)} &\frac{1}{k}&\frac{15}{(2k)}\\\frac{-3k+15}{(10k)}&\frac{-1}{k}&\frac{-75+13k}{(10k)}\\\frac{1}{2}&0&\frac{-5}{2}\end{array}\right]](https://tex.z-dn.net/?f=%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Cfrac%7B-3%7D%7B%282k%29%7D%20%26%5Cfrac%7B1%7D%7Bk%7D%26%5Cfrac%7B15%7D%7B%282k%29%7D%5C%5C%5Cfrac%7B-3k%2B15%7D%7B%2810k%29%7D%26%5Cfrac%7B-1%7D%7Bk%7D%26%5Cfrac%7B-75%2B13k%7D%7B%2810k%29%7D%5C%5C%5Cfrac%7B1%7D%7B2%7D%260%26%5Cfrac%7B-5%7D%7B2%7D%5Cend%7Barray%7D%5Cright%5D)
Therefore the Inverse of the matrix is; A⁻¹
![= \left[\begin{array}{ccc}\frac{-3}{(2k)} &\frac{1}{k}&\frac{15}{(2k)}\\\frac{-3k+15}{(10k)}&\frac{-1}{k}&\frac{-75+13k}{(10k)}\\\frac{1}{2}&0&\frac{-5}{2}\end{array}\right]](https://tex.z-dn.net/?f=%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Cfrac%7B-3%7D%7B%282k%29%7D%20%26%5Cfrac%7B1%7D%7Bk%7D%26%5Cfrac%7B15%7D%7B%282k%29%7D%5C%5C%5Cfrac%7B-3k%2B15%7D%7B%2810k%29%7D%26%5Cfrac%7B-1%7D%7Bk%7D%26%5Cfrac%7B-75%2B13k%7D%7B%2810k%29%7D%5C%5C%5Cfrac%7B1%7D%7B2%7D%260%26%5Cfrac%7B-5%7D%7B2%7D%5Cend%7Barray%7D%5Cright%5D)