Answer:
θ = Cos⁻¹[A.B/|A||B|]
A. The angle between two nonzero vectors can be found by first dividing the dot product of the two vectors by the product of the two vectors' magnitudes. Then taking the inverse cosine of the result
Explanation:
We can use the formula of the dot product, in order to find the angle between two non-zero vectors. The formula of dot product between two non-zero vectors is written a follows:
A.B = |A||B| Cosθ
where,
A = 1st Non-Zero Vector
B = 2nd Non-Zero Vector
|A| = Magnitude of Vector A
|B| = Magnitude of Vector B
θ = Angle between vector A and B
Therefore,
Cos θ = A.B/|A||B|
<u>θ = Cos⁻¹[A.B/|A||B|]</u>
Hence, the correct answer will be:
<u>A. The angle between two nonzero vectors can be found by first dividing the dot product of the two vectors by the product of the two vectors' magnitudes. Then taking the inverse cosine of the result</u>
The formula for velocity vf = vi + at
First list your given information
2m/s Is your initial velocity (vi)
6m/s is you final velocity (vf)
2 seconds is your time (t)
Since you want the a for acceleration get a by itself
a = (vf-vi)/t
So a= (6-2)/2
a= 4/2
a=2
Now units
the units for acceleration are m/s

2m/s
Rock layers are folded and appear to be scratched because of the plate tectonics and the glacial advance.
Answer: Option 1 and 2.
<u>Explanation:</u>
Plate tectonics and the glacial advance are the geological phenomenon which have the power to effect the layers of the rock. Because of these, there can be scratches on the layers of the rock and the layers of the rocks can be folded.
The huge mass of ice that is included in the glacier which may be of thickness of three to four kilometers is a lot to scratch the rocks. These glaciers are responsible for moving the rocks from their original position to a new place altogether.
Answer:
<em>Answer: Work equals force times distance. 3,000 J</em>
Explanation:
Work Done By A Force
When some force
is applied and a displacement
is achieved, the work done by the force is given by

Note that the work is a scalar magnitude as the result of the dot-product of two vectors. If the force and the displacement are parallel, then the vectors can be replaced as its magnitudes F,x and the work is

The dot product becomes a simple arithmetic product, i.e force times distance.
Sara weighs 500 Nw and she climbs up a 6 meter set of stairs. She needs to lift her weight up, so the force is the weight and the distance is the height of the stairs, thus

Answer: Work equals force times distance. 3,000 J