<span>The strong bonds give graphite high boiling and melting points, while the weak bonds make graphite soft and flexible.</span>
Hello!
The half-life is the time of half-disintegration, it is the time in which half of the atoms of an isotope disintegrate.
We have the following data:
mo (initial mass) = 53.3 mg
m (final mass after time T) = ? (in mg)
x (number of periods elapsed) = ?
P (Half-life) = 10.0 minutes
T (Elapsed time for sample reduction) = 25.9 minutes
Let's find the number of periods elapsed (x), let us see:






Now, let's find the final mass (m) of this isotope after the elapsed time, let's see:




I Hope this helps, greetings ... DexteR! =)
Taking into account the definition of avogadro's number, 3.82×10⁻³ moles of H are 2.3×10²¹ particles of H.
<h3>
Avogadro's Number</h3>
Avogadro's Number or Avogadro's Constant is called the number of particles that make up a substance (usually atoms or molecules) and that can be found in the amount of one mole of said substance. Its value is 6.023×10²³ particles per mole. Avogadro's number applies to any substance.
<h3>This case</h3>
Then you can apply the following rule of three: if 6.023×10²³ particles are contained in 1 mole of H, then 2.3×10²¹ particles are contained in how many moles of H?
amount of moles of H= (2.3×10²¹ particles × 1 mole)÷ 6.023×10²³ particles
<u><em>amount of moles of H= 3.82×10⁻³ moles</em></u>
Finally, 3.82×10⁻³ moles of H are 2.3×10²¹ particles of H.
Learn more about Avogadro's Number:
<u>brainly.com/question/11907018?referrer=searchResults
</u>
<u>brainly.com/question/1445383?referrer=searchResults
</u>
<u>brainly.com/question/1528951?referrer=searchResults</u>
The spaceship does not have any gravitational pull. A spaceship can not produce its own gravity like Earth does.
For example, copper is used for electrical<span> wiring because it is a </span>good conductor of electricity<span>. </span>Metal<span> particles are held together by strong metallic bonds, which is why they have high melting and boiling points. The free electrons in </span>metals<span> can move through the </span>metal<span>, allowing </span>metals<span> to conduct </span>electricity<span>.</span>