The answer would be the last one- it separates dissolved substances.
Have a great rest of your day!
Data: molar mass 470 g/mol
Percent composition:
Hg = 85.0%
Cl = 15.0%
Solution:
1) Convert % to molar ratios
A. Base: 100 g
=> Hg = 85.0 g / 200.59 g/mol = 0.4235 mol
Cl = 15.0 g / 35.45 g/mol = 0.4231 mol
B. divide by the higher number and round to whole number
Hg = 0.4325 / 0.4231 = 1.00
Cl = 0.4231 / 0.4231 = 1.00
=> Empirical formula = Hg Cl
2) Find the mass of the empirical formula:
HgCl: 200.59 g/mol + 35.45 g/mol = 236.04
3) Determine how many times is the empirical mass contained in the molecular mass:
470 g/mol / 236.04 = 1.99 ≈ 2
=> Molecular formula = Hg2 Cl2.
Answers:
Empirical formula HgCl
Molecular Formula Hg2Cl2
Answer:
403 mL
Explanation:
First, I will assume that the mole is 1, because you are not specifing this.
Now, with the innitial data, we need to get the pressure:
T = 65+273 = 338 K
V = 500 / 1000 = 0.5 L
Now if:
PV = nRT
Then:
P = nRT/V and V = nRT/P
Let's calculate the P:
P = 1 * 0.082 * 338 / 0.5 = 55.432 atm
The standard temperature is 0° C or 273 K so, the volume is:
V = 1 * 0.082 * 273 / 55.432
V = 0.40384 L or simply 403.84 mL
1 is seconds and meters m/s
2 is seconds and meters m/s^2
3 Newton kg/m
4 Kilograms
Hope this helps!
Answer:
212.8 dm^3 or L
Explanation:
1 mole of any sub=6.02×10^23 molecules
X mole of O2=5.7×10^24 molecules
X mole=5.7×10^24/6.02×10^23
=9.5 mole
1 mole of any gas at stp=22.4 dm^3
Therefore, 9.5 mole of O2 will be 22.4×9.5
=212.8 dm^3