<span>The current is 6 miles per hour.
Let's create a few equations:
Traveling with the current:
(18 + c)*t = 16
Traveling against the current:
(18 - c)*t = 8
Let's multiply the 2nd equation by 2
(18 - c)*t*2 = 16
Now subtract the 1st equation from the equation we just doubled.
(18 - c)*t*2 = 16
(18 + c)*t = 16
(18 - c)*t*2 - (18 + c)*t = 0
Divide both sides by t
(18 - c)*2 - (18 + c) = 0
Now solve for c
(18 - c)*2 - (18 + c) = 0
36 - 2c - 18 - c = 0
36 - 2c - 18 - c = 0
18 - 3c = 0
18 = 3c
6 = c
So the current is 6 mph.
Let's verify that.
(18 + 6)*t = 16
24*t = 16
t = 16/24 = 2/3
(18 - 6)*t = 8
12*t = 8
t = 8/12 = 2/3
And it's verified.</span>
Answer:
57,42 KJ
Explanation:
By a isobaric proces, the expresion for the works in the jpg adjunt. Then:
W = Pa(Vb - Va) = Pa*Vb - Pa*Va ---(1)
By the ideal gases law: PV=RTn
Then, in (1): (remember Pa = Pb)
W = R*Tb*n - R*T*an = R*n*(Tb - Ta) --- (2)
Since we have 1 Kg air: How much is this in moles?
From bibliography: 28.96 g/mol
Then, in 1 Kg (1000 g) there are:
n = 34,53 mol
Finally, in (2):
W = (8,3144 J/K.mol)*(34,53 mol)*(500K - 300K) = 51 419,9 J ≈ 57,42 KJ
Answer:
Explanation:
Solution:
- Finding large moons comparable in size to their planets result from impacts of two astro-bodies. The probability of such an event occurring is very rare.
- Even at the best luck, one moon can be made from the result of giant impact. While the probability of 6 planets having moons of comparable sizes is close to impossible.
Answer:
<u>We are given:</u>
u = 2.5 m/s
a = 0.2 m/s/s
t = 25 seconds
v = v m/s
<u>Solving for 'v':</u>
From the first equation of motion:
v = u + at
Replacing the values
v = 2.5 + (0.2)(25)
v = 2.5 + 5
v = 7.5 m/s
The freezing point of the water is 0 C , and it equals to 273 K
Then, To convert from Kelvins degrees to Celsius degrees we use the relation
Also,