I’m pretty sure the answer is D :)
Answer:
D. To ensure the cooling process is not affected by surrounding temperature
Explanation:
The conical flask acts as a <u>t</u><u>e</u><u>m</u><u>p</u><u>e</u><u>r</u><u>a</u><u>t</u><u>u</u><u>r</u><u>e</u><u> </u><u>j</u><u>a</u><u>c</u><u>k</u><u>e</u><u>t</u><u>.</u>
The amount of heat needed to raise the temperature of an object is obtained through the equation,
H = m(cp)(20) + m (heat of fusion) + m(cp) (dT)
where H is heat, m is mass, cp is specific gravity, and dT is the change in temperature. The specific gravity of water is 0.5 cal/g.C. The third term is for water and cp is equal to 1 cal/g.C. Substituting the values,
815 cal = (5 g)(0.5 cal/g.C)(20C) + (80 cal/g)(5 g) + 5(1)(T2)
The value of T2 is 73 degrees C.
Answer is: <span>the molarity of this glucose solution is 0.278 M.
m</span>(C₆H₁₂O₆<span>) = 5.10 g.
n</span>(C₆H₁₂O₆) = m(C₆H₁₂O₆) ÷ M(C₆H₁₂O₆<span>) .
</span>n(C₆H₁₂O₆) = 5.10 g ÷ 180.156 g/mol.
n(C₆H₁₂O₆<span>) = 0.028 mol.
</span>V(solution) = 100.5 mL ÷ 1000 mL/L.
V(solution) = 0.1005 L.
c(C₆H₁₂O₆) = n(C₆H₁₂O₆) ÷ V(solution).
c(C₆H₁₂O₆) = 0.028 mol ÷ 0.1005 L.
c(C₆H₁₂O₆<span>) = 0.278 mol/L.</span>