Answer:
1. Percentage by weight = 0.5023 = 50.23 %
2. molar fraction =0.153
Explanation:
We know that
Molar mass of HClO4 = 100.46 g/mol
So the mass of 5 Moles= 5 x 100.46
Mass (m)= 5 x 100.46 = 502.3 g
Lets assume that aqueous solution of HClO4 and the density of solution is equal to density of water.
Given that concentration HClO4 is 5 M it means that it have 5 moles of HClO4 in 1000 ml.
We know that
Mass = density x volume
Mass of 1000 ml solution = 1 x 1000 =1000 ( density = 1 gm/ml)
m'=1000 g
1.
Percentage by weight = 502.3 /1000
Percentage by weight = 0.5023 = 50.23 %
2.
We know that
molar mass of water = 18 g/mol
mass of water in 1000 ml = 1000 - 502.3 g=497.9 g
So moles of water = 497.7 /18 mole
moles of water = 27.65 moles
So molar fraction = 5/(5+27.65)
molar fraction =0.153
The pairing that accurately matches a bio molecule polymer with its monomer subunit would be B. Protein and amino acids.
Seven diatomic elements are H₂, Cl₂, N₂, F₂, Br₂, I₂ and O₂.
<h3>Which are diatomic molecules?</h3>
Diatomic molecules are those molecules in which two atoms of same elements are present, and they are combined to attain the stability.
The seven diatomic molecules which are exist in the chemistry are:
- Hydrogen gas (H₂)
- Chlorine gas (Cl₂)
- Nitrogen gas (N₂)
- Fluorine gas (F₂)
- Bromine gas (Br₂)
- Iodine gas (I₂)
- Oxygen gas (O₂)
Hence H₂, Cl₂, N₂, F₂, Br₂, I₂ and O₂ are 7 diatomic molecules.
To know more about diatomic molecules, visit the below link:
brainly.com/question/14466404
#SPJ1
Answer:
I play none but If I did I would choose Xbox
btw, thank you
Answer:
r = 3.61x
M/s
Explanation:
The rate of disappearance (r) is given by the multiplication of the concentrations of the reagents, each one raised of the coefficient of the reaction.
r = k.![[S2O2^{-8} ]^{x} x [I^{-} ]^{y}](https://tex.z-dn.net/?f=%5BS2O2%5E%7B-8%7D%20%5D%5E%7Bx%7D%20x%20%5BI%5E%7B-%7D%20%5D%5E%7By%7D)
K is the constant of the reaction, and doesn't depends on the concentrations. First, let's find the coefficients x and y. Let's use the first and the second experiments, and lets divide 1º by 2º :



x = 1
Now, to find the coefficient y let's do the same for the experiments 1 and 3:




y = 1
Now, we need to calculate the constant k in whatever experiment. Using the first :


k = 4.01x10^{-3} M^{-1}s^{-1}[/tex]
Using the data given,
r = 
r = 3.61x
M/s