Together, normal and reverse faults are called dip-slip faults, because the movement on them occurs along the dip direction -- either down or up, respectively. Reverse faults create some of the world's highest mountain chains, including the Himalaya Mountains and the Rocky Mountains .
The calculated coefficient of kinetic friction is 0.33125.'
The rate of kinetic friction the friction force to normal force ratio experienced by a body moving on a dry, uneven surface is known as k. The friction coefficient is the ratio of the normal force pressing two surfaces together to the frictional force preventing motion between them. Typically, it is represented by the Greek letter mu (). In terms of math, is equal to F/N, where F stands for frictional force and N for normal force.
given mass of the block=10 kg
spring constant k= 2250 Nm
now according to principal of conservation of energy we observe,
the energy possessed by the block initially is reduced by the friction between the points B and C and rest is used up in work done by the spring.
mgh= μ (mgl) +1/2 kx²
10 x 10 x 3= μ(600) +(1125) (0.09)
μ(600) =300 - 101.25
μ = 198.75÷600
μ =0.33125
The complete question is- A 10.0−kg block is released from rest at point A in Fig The track is frictionless except for the portion between point B and C, which has a length of 6.00m the block travels down the track, hits a spring of force constant 2250N/m, and compresses the spring 0.300m form its equilibrium position before coming to rest momentarily. Determine the coefficient of kinetic friction between the block and the rough surface between point Band (C)
Learn more about kinetic friction here-
brainly.com/question/13754413
#SPJ4
Answer:
The outline of the energy transfer are;
a) Kinetic energy → Clockwork spring → Potential energy
b) Potential energy in clockwork car → Clockwork spring coil unwound → Clockwork car run
c) Chemical potential energy → Batteries in the car → Electric motors → Kinetic energy
Please find attached the drawings of the energy transfer created with MS Visio
Explanation:
The energy transfer diagrams are diagrams that can be used to indicate the part of a system where energy is stored and the form and location to which the energy is transferred
a) The energy transfer diagram for the winding up a clockwork car is given as follows;
Mechanical kinetic energy is used to wind up (turn) the clockwork car such that the kinetic energy is transformed into potential energy and stored in the wound up clockwork as follows;
Kinetic energy → Clockwork spring → Potential energy
b) Letting a wound up clockwork car run results in the conversion of mechanical potential energy into kinetic (energy due tom motion) energy as follows;
Potential energy in clockwork car → Clockwork spring coil unwound → Clockwork car run
c) The energy stored in the battery of a battery powered car is chemical potential energy. When the battery powered car runs, the chemical potential energy produces an electromotive force which is converted into kinetic energy as electric current flows from the batteries
Therefore, we have;
Chemical potential energy → Batteries in the car → Electric motors → Kinetic energy
Answer:
Physics is a branch of science. It is one of the most fundamental scientific disciplines. The main goal of physics is to explain how things move in space and time and understand how the universe behaves. It studies matter, forces and their effects. The word physics comes from the Greek