Answer: Magnesium
Explanation:
Galvanic cell is a device which is used for the conversion of the chemical energy produces in a redox reaction into the electrical energy.
The standard reduction potential for magnesium and zinc are as follows:
![E^0_{[Mg^{2+}/Mg]}= -2.37V](https://tex.z-dn.net/?f=E%5E0_%7B%5BMg%5E%7B2%2B%7D%2FMg%5D%7D%3D%20-2.37V)
![E^0_{[Zn^{2+}/Zn]}=-0.76V](https://tex.z-dn.net/?f=E%5E0_%7B%5BZn%5E%7B2%2B%7D%2FZn%5D%7D%3D-0.76V)
Reduction takes place easily if the standard reduction potential is higher (positive) and oxidation takes place easily if the standard reduction potential is less (more negative).
Here Mg undergoes oxidation by loss of electrons, thus act as anode. Zinc undergoes reduction by gain of electrons and thus act as cathode.


Thus magnesium gets oxidized.
Answer:

Explanation:
We have the reactions:
A: 
B: 
Our <u>target reaction</u> is:

We have
as a reactive in the target reaction and
is present in A reaction but in the products side. So we have to<u> flip reaction A</u>.
A: 
Then if we add reactions A and B we can obtain the target reaction, so:
A: 
B: 
For the <u>final Kc value</u>, we have to keep in mind that when we have to <u>add chemical reactions</u> the total Kc value would be the <u>multiplication</u> of the Kc values in the previous reactions.


At the constant temperatures the lighter the gas molecules, the faster the average velocity of the gas molecules.
Answer:
b) 5.87 E23 molecules
Explanation:
∴ mm SO3 = 80.066 g/mol
⇒ molecules SO3 = (78.0 g)(mol/80.066 g)(6.022 E23 molec/mol)
⇒ molec SO3 = 5.866 E23 molecules SO3