Answer:
Explanation:
The gas ideal law is
PV= nRT (equation 1)
Where:
P = pressure
R = gas constant
T = temperature
n= moles of substance
V = volume
Working with equation 1 we can get

The number of moles is mass (m) / molecular weight (mw). Replacing this value in the equation we get.
or
(equation 2)
The cylindrical container has a constant pressure p
The volume is the volume of a cylinder this is

Where:
r = radius
h = height
(pi) = number pi (3.1415)
This cylinder has a radius, r and height, h so the volume is 
Since the temperatures has linear distribution, we can say that the temperature in the cylinder is the average between the temperature in the top and in the bottom of the cylinder. This is:
Replacing these values in the equation 2 we get:
(equation 2)
Answer:
A link is a fastening unit that attaches two parts of an object together
Different types of links have different characteristics
Answer:
V of Sulfur tetrafluoride is 17.2 L
Explanation:
Given data;
T = -6°C = 267K [1° C = 273 K]
n = 786 mmol of SF4 which is 0.786 mol
P = 1 atm
from ideal gas law we have
PV = nRT
where n is mole, R is gas constant, V is volume


V of Sulfur tetrafluoride is 17.2 L
When we wish to convert a gas to liquid we have to either
a) decrease temperature
b) increase pressure
In case of fire extinguisher the CO2 is found to be in liquid state, this is as the CO2 is pressurized at high pressure which keeps CO2 in liquid state
the ideal pressure and temperature conditions when CO2 gas can be converted to CO2 gas
Pressure = 5 - 73 atm
Temperature = -57 to 31 degree Celsius
The answer is either D or B. hope this helps.