Answer:
E = 0.0130 V/m.
Explanation:
The electric field is related to the potential difference as follows:

<u>Where:</u>
E: is electric field
ΔV: is the potential difference = 3.95 mV
d: is the distance of a person's chest = 0.305 m
Then, the electric field is:

Therefore, the maximum electric field created is 0.0130 V/m.
I hope it helps you!
Because gravity accelerates all objects the same regardless of their mass
Going to college and passing all your classes
When you're in an airplane that's 7 miles up off the ground, the strength of gravity plunges to only 99.6 percent of its strength all the way down on the ground.
A big heavy person, who weighs 200 pounds down at the airport, weighs only 199 pounds 4.7 ounces in a plane at the altitude of 7 miles.
Answer:
The resultant force would (still) be zero.
Explanation:
Before the 600-N force is removed, the crate is not moving (relative to the surface.) Its velocity would be zero. Since its velocity isn't changing, its acceleration would also be zero.
In effect, the 600-N force to the left and 200-N force to the right combines and acts like a 400-N force to the left.
By Newton's Second Law, the resultant force on the crate would be zero. As a result, friction (the only other horizontal force on the crate) should balance that 400-N force. In this case, the friction should act in the opposite direction with a size of 400 N.
When the 600-N force is removed, there would only be two horizontal forces on the crate: the 200-N force to the right, and friction. The maximum friction possible must be at least 200 N such that the resultant force would still be zero. In this case, the static friction coefficient isn't known. As a result, it won't be possible to find the exact value of the maximum friction on the crate.
However, recall that before the 600-N force is removed, the friction on the crate is 400 N. The normal force on the crate (which is in the vertical direction) did not change. As a result, one can hence be assured that the maximum friction would be at least 400 N. That's sufficient for balancing the 200-N force to the right. Hence, the resultant force on the crate would still be zero, and the crate won't move.