Answer:
= +3,394 103 m / s
Explanation:
We will solve this problem with the concept of the moment. Let's start by defining the system that is formed by the complete rocket before and after the explosions, bone with the two stages, for this system the moment is conserved.
The data they give is the mass of the first stage m1 = 2100 kg, the mass of the second stage m2 = 1160 kg and its final velocity v2f = +5940 m / s and the speed of the rocket before the explosion vo = +4300 m / s
The moment before the explosion
p₀ = (m₁ + m₂) v₀
After the explosion
pf = m₁
+ m₂ 
p₀ = [texpv_{f}[/tex]
(m₁ + m₂) v₀ = m₁
+ m₂
Let's calculate the final speed (v1f) of the first stage
= ((m₁ + m₂) v₀ - m₂
) / m₁
= ((2100 +1160) 4300 - 1160 5940) / 2100
= (14,018 10 6 - 6,890 106) / 2100
= 7,128 106/2100
= +3,394 103 m / s
come the same direction of the final stage, but more slowly
Answer:

Explanation:
The two cars are under an uniform linear motion. So, the distance traveled by them is given by:

is the same for both cars when the second one catches up with the first. If we take as reference point the initial position of the second car, we have:

We have
. Thus, solving for t:

Answer:
Safety
Explanation:
Expressways are banked to resist centifugal action
Answer:
The frequency is 302.05 Hz.
Explanation:
Given that,
Speed = 18.0 m/s
Suppose a train is traveling at 30.0 m/s relative to the ground in still air. The frequency of the note emitted by the train whistle is 262 Hz .
We need to calculate the frequency
Using formula of frequency

Where, f = frequency
v = speed of sound
= speed of passenger
= speed of source
Put the value into the formula


Hence, The frequency is 302.05 Hz.
Answer: 7 km
Explanation: 12 minutes is 1/5 of an hour. 35/5=7