Answer:True
Explanation:
Buoyant force is the net upward force, that affect on the object in a fluid
Answer:
Distance
Explanation:
distance is in vertical axis,or y-axis and time is on the horizontal axis,or x-axis.
Here is the rule for see-saws here on Earth, and there is no reason
to expect that it doesn't work exactly the same anywhere else:
(weight) x (distance from the pivot) <u>on one side</u>
is equal to
(weight) x (distance from the pivot) <u>on the other side</u>.
That's why, when Dad and Tiny Tommy get on the see-saw, Dad sits
closer to the pivot and Tiny Tommy sits farther away from it.
(Dad's weight) x (short length) = (Tiny Tommy's weight) x (longer length).
So now we come to the strange beings on the alien planet.
There are three choices right away that both work:
<u>#1).</u>
(400 N) in the middle-seat, facing (200 N) in the end-seat.
(400) x (1) = (200) x (2)
<u>#2).</u>
(200 N) in the middle-seat, facing (100 N) in the end-seat.
(200) x (1) = (100) x (2)
<u>#3).</u>
On one side: (300 N) in the end-seat (300) x (2) = <u>600</u>
On the other side:
(400 N) in the middle-seat (400) x (1) = 400
and (100 N) in the end-seat (100) x (2) = 200
Total . . . . . . . . . . . . <u>600</u>
These are the only ones to be identified at Harvard . . . . . . .
There may be many others but they haven't been discarvard.
516.154 megawatts of heat are <em>exhausted</em> to the river that cools the plant.
By definition of energy efficiency, we derive an expression for the energy rate exhausted to the river (
), in megawatts:
(1)
Where:
- Efficiency.
- Electric power, in megawatts.
If we know that
and
, then the energy rate exhausted to the river is:


516.154 megawatts of heat are <em>exhausted</em> to the river that cools the plant.
We kindly to check this question on first law of thermodynamics: brainly.com/question/3808473