Answer:
Option b. Effective nuclear charge increases as we move to the right across a row in the periodic table
Explanation:
The <em>effective nuclear charge </em>is a measure of how strong the protons in the nucleus of an atom attract the outermost electrons of such atom.
The <em>effective nuclear charge</em> is the net positive charge experienced by valence electrons and is calculated (as an approximation) by the equation: Zeff = Z – S, where Z is the atomic number and S is the number of shielding electrons.
The shielding electrons are those electrons in between the interesting electrons and the nucleus of the atom.
Since the shielding electrons are closer to the nucleus, they repel the outermost electrons and so cancel some of the attraction exerted by the positive charge of the nucleus, meaning that the outermost electrons feel less the efect of attraction of the protons. That is why in the equation of Zeff, the shielding electrons (S) subtract the total from the atomic number Z.
The <em>effective nuclear charge</em>, then, is responsible for some properties and trends in the periodic table. Here, you can see how this explains the trend of the atomic radius (size of the atom) accross a row in the periodic table.
- As the<em> effective nuclear charge</em> is larger, in a same row of the periodic table, the shielding effect is lower, the outermost electrons are more strongly attracted by the nucleus, and the size of the atoms decrease. That is why as we move to the right in the periodic table, the size of the atoms decrease.
Answer:

Explanation: Weight of space probes on earth is given by:
W= weight of the object( in N)
m= mass of the object (in kg)
g=acceleration due to gravity(9.81
)
Therefore,


Similarly,


Now, considering these two parts as uniform spherical objects
Also, according to Superposition principle, gravitational net force experienced by an object is sum of all individual forces on the object.
Force between these two objects is given by:

G= gravitational constant (
)
= masses of the object
R= distance between their centres (in m)(18 m)
Substituiting all these values into the above formula

This is the magnitude of force experienced by each part in the direction towards the other part, i.e the gravitational force is attractive in nature.
Yes. Either way though, humans have more chromosomes than any other species.
Answer:
The quantity of electrons that flows past a given point is 3.0 C.
Explanation:
An electric current (I) is the ratio of the quantity of charges (Q) that flows through a point to the time taken (t).
i.e I = 
It is measured in Ampere's by the use of an ammeter in the laboratory. The quantity of charge that flow through a given point is measured in Coulombs, while time is measured in seconds.
Given that; I = 1.5A and t = 2s, find Q.
Q = It
= 1.5 × 2
= 3.0 C
The quantity of electrons that flows past a given point is 3.0 C.
1) Current: 4.5 A
2) Time taken: 4.7 s
Explanation:
1)
The electric current intensity is defined as the rate at which charge flows in a conductor; mathematically:

where
I is the current
q is the amount of charge passing a given point in a time t
For the wire in this problem, we have
q = 9.0 C is the amount of charge
t = 2.0 s is the time interval
Solving for I, we find the current:

2)
To solve this problem, we can use again the same formula

where
I is the current
q is the amount of charge passing a given point in a time t
In this problem, we have:
I = 3.0 A (current)
q = 14.0 C (charge)
Therefore, the time taken for the charge to move past a particular spot in the wire is

Learn more about electric current:
brainly.com/question/4438943
brainly.com/question/10597501
brainly.com/question/12246020
#LearnwithBrainly