1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
matrenka [14]
2 years ago
15

During which phase of the moon can a lunar eclipse happen?.

Physics
1 answer:
Umnica [9.8K]2 years ago
7 0
Full moon!

when Earth is exactly between the Moon and Sun, Earth's shadow falls upon the surface of the Moon, dimming it and sometimes turning the surface red over the course of a few hours.
You might be interested in
DON'T ANSWER IF YOU DON'T KNOW
Darina [25.2K]

Answer:

the answer is Natural selection

3 0
3 years ago
Read 2 more answers
What are the four different types of economic resources?
77julia77 [94]
The factors of production are resources that are the building blocks of the economy; they are what people use<span> to </span>produce goods<span> and services. Economists divide the factors of production into four categories: </span>land<span>, </span>labor<span>, </span>capital<span>, and entrepreneurship. hope that helped</span>
8 0
3 years ago
A student wants to determine the impulse delivered to the lab cart when it runs into the wall. The student measures the mass of
WINSTONCH [101]

The correct answer to the question is : A) The velocity of the cart after it hits the wall.

EXPLANATION:

Before answering this question, first we have to understand impulse.

Impulse of a body is defined as the change in momentum or the product of force with time.

Mathematically impulse = m ( v- u ).

Here, v is the final momentum and u is the initial momentum.

Hence, we need the velocity of the cart after it hits the wall in order to calculate the impulse of the lab cart.

4 0
3 years ago
Read 2 more answers
A photon of wavelength 7.33 pm scatters at an angle of 157° from an initially stationary, unbound electron. What is the de Brogl
Ann [662]

Answer:

4.63 p.m.

Explanation:

The problem given here can be solved by the Compton effect which is expressed as

\lambda^{'}-\lambda=\frac{h}{m_e c}(1-cos\theta)

here, \lambda  is the initial photon wavelength, \lambda^{'} is the scattered photon wavelength, h is he Planck's constant, m_e is the free electron mass, c is the velocity of light, \theta  is the angle of scattering.

Given that, the scattering angle is, \theta=157^{\circ}

Putting the respective values, we get

\lambda^{'}-\lambda=\frac{6.626\times 10^{-34} }{9.11\times 10^{-31}\times 3\times 10^{8}  } (1-cos157^\circ ) m\\\lambda^{'}-\lambda=2.42\times 10^{-12} (1-cos157^\circ ) m\\\lambda^{'}-\lambda=2.42(1-cos157^\circ ) p.m.

Therfore,

\lambda^{'}-\lambda=4.64 p.m.

Here, the photon's incident wavelength is \lamda=7.33pm

So,

\lambda^{'}=7.33+4.64=11.97 p.m

From the conservation of momentum,

\vec{P_\lambda}=\vec{P_{\lambda^{'}}}+\vec{P_e}

here, \vec{P_\lambda} is the initial photon momentum, \vec{P_{\lambda^{'}}} is the final photon momentum and \vec{P_e} is the scattered electron momentum.

Expanding the vector sum, we get

P^2_{e}=P^2_{\lambda}+P^2_{\lambda^{'}}-2P_\lambda P_{\lambda^{'}}cos\theta

Now expressing the momentum in terms of De-Broglie wavelength

P=h/\lambda and putting it in the above equation we get,

\lambda_{e}=\frac{\lambda \lambda^{'}}{\sqrt{\lambda^{2}+\lambda^{2}_{'}-2\lambda \lambda^{'} cos\theta}}

Therfore,

\lambda_{e}=\frac{7.33\times 11.97}{\sqrt{7.33^{2}+11.97^{2}-2\times 7.33\times 11.97\times cos157^\circ }} p.m.\\\lambda_{e}=\frac{87.7401}{18.935} = 4.63 p.m.

This is the de Broglie wavelength of the electron after scattering.

8 0
4 years ago
Under the assumption that the beam is a rectangular cantilever beam that is free to vibrate, the theoretical first natural frequ
BartSMP [9]

Answer:

a) Δf = 0.7 n , e)   f = (15.1 ± 0.7) 10³ Hz

Explanation:

This is an error about the uncertainty or error in the calculated quantities.

Let's work all the magnitudes is the SI system

The frequency of oscillation is

        f = n / 2π L² √( E /ρ)

where n is an integer

Let's calculate the magnitude of the oscillation

       f = n / 2π (0.2335)² √ (210 10⁹/7800)

       f = n /0.34257 √ (26.923 10⁶)

       f = n /0.34257    5.1887 10³

       f = 15.1464 10³ n

a) We are asked for the uncertainty of the frequency (Df)

       Δf = | df / dL | ΔL + df /dE ΔE + df /dρ Δρ

in this case no  error is indicated in Young's modulus and density, so we will consider them exact

       ΔE = Δρ = 0

       Δf = df /dL  ΔL

       df = n / 2π   √E /ρ   | -2 / L³ | ΔL

       df = n / 2π 5.1887 10³ | 2 / 0.2335³) 0.005 10⁻³

       df = n 0.649

Absolute deviations must be given with a single significant figure

        Δf = 0.7 n

b, c) The uncertainty with the width and thickness of the canteliver is associated with the density

 

In your expression there is no specific dependency so the uncertainty should be zero

The exact equation for the natural nodes is

          f = n / 2π L² √ (E e /ρA)

where A is the area of ​​the cantilever and its thickness,

In this case, they must perform the derivatives, calculate and approximate a significant figure

        Δf = | df / dL | ΔL + df /de  Δe + df /dA  ΔA

        Δf = 0.7 n + n 2π L² √(E/ρ A) | ½  1/√e | Δe

               + n / 2π L² √(Ee /ρ) | 3/2 1√A23  |

the area is

        A = b h

        A = 24.9  3.3  10⁻⁶

        A = 82.17 10⁻⁶ m²

        DA = dA /db ΔB + dA /dh Δh

        dA = h Δb + b Δh

        dA = 3.3 10⁻³ 0.005 10⁻³ + 24.9 10⁻³ 0.005 10⁻³

        dA = (3.3 + 24.9) 0.005 10⁻⁶

        dA = 1.4 10⁻⁷ m²

let's calculate each term

         A ’= n / 2π L² √a (E/ρ A) | ½ 1 /√ e | Δe

         A ’= n/ 2π L² √ (E /ρ)      | ½ 1 / (√e/√ A) |Δe

        A ’= 15.1464 10³ n ½ 1 / [√ (24.9 10⁻³)/ √ (81.17 10⁻⁶)] 0.005 10⁻³

        A '= 0.0266  n

        A ’= 2.66 10⁻² n

       A ’’ = n / 2π L² √ (E e /ρ) | 3/2  1 /√A³ |

       A ’’ = n / 2π L² √(E /ρ) √ e | 3/2  1 /√ A³ | ΔA

       A ’’ = n 15.1464 10³ 3/2 √ (24.9 10⁻³) /√ (82.17 10⁻⁶) 3 1.4 10⁻⁷

       A ’’ = n 15.1464 1.5 1.5779 / 744.85 1.4 10⁴

       A ’’ = 6,738 10²

we write the equation of uncertainty

     Δf = n (0.649 + 2.66 10⁻² + 6.738 10²)

The uncertainty due to thickness is

    Δf = 3 10⁻² n

The uncertainty regarding the area, note that this magnitude should be measured with much greater precision, specifically the height since the errors of the width are very small

     Δf = 7 10² n

 d)    Δf = 7 10² n

e) the natural frequency n = 1

       f = (15.1 ± 0.7) 10³ Hz

7 0
3 years ago
Other questions:
  • A hollow spherical iron shell floats almost completely submerged in water. The outer diameter is 58.2 cm, and the density of iro
    9·1 answer
  • Choose all the answers that apply.
    11·2 answers
  • A teacher pushed a 98 newton desk across a floor for a distance of 5 meter he exerted a horizontal force of 20 newton for four s
    8·1 answer
  • Which of the following is a temporary magnet made by placing a piece of iron inside a current-carrying coil of wire
    8·1 answer
  • A 420-turn circular coil with an area of 0.0650 m2 is mounted on a rotating frame, which turns at a rate of 22.3 rad/s in the pr
    5·1 answer
  • Tyler throws a baseball, which accidentally breaks a window in his neighbor's house. Which of the following represents the actio
    12·2 answers
  • Which of the following frequencies falls in the range of RF waves used by commercial radio broadcasting stations?
    10·2 answers
  • Although it shouldn’t have happened, on a dive I fail to watch my SPG and run out of air. If my buddy is close by, my best optio
    15·1 answer
  • _____is the most abused of all fossil fuels <br> A.Gasoline<br> B.Coal<br> CPeat<br> D petroleum
    14·1 answer
  • Acep
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!